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ABSTRACT

The microsolvation has been subject of intense theoretical and experimental study

with implications in diverse areas such as atmospheric chemistry, biological processes, per-

meation and transport membrane, among others. Therefore, this thesis aimed to develop a

study of the microsolvatation of ions through noble gases. One of our specific goals is to

survey the microsolvatation of ion Li+by argon, kripton and mixture of these atoms. For this

construction, analyses involving the interaction construction of two and three-bodies metal-

alkaline ions with noble gases, from the fitting of potential functions ab initios on the eletronic

energy using the methodology CCSD(T). The determination of stable clusters structures will

be given by the application of the evolutionary algorithm (EA). The evolutionary algorithm

will search of these low energy structures, both in global and local minima. In order to

strengthen this study, pos-optimization calculations using the ab initios CCSD(T) and MP2

methods are also performed. Treatment of clusters with noble gases of higher numbers, a

DFT methodology is also used in the stage of pos-optimization, with the goal to perform a

Benchmark analysis of these systems. Lastly, from diverse local minima generated by evo-

lutionary algorithm we applied a Machine Learning technique to enable the determination

of choose rules of the better EA minima that present an efficient description of the energy

landscape from the clusters length.

Keywords: Evolutionary Algorithm, Cluster Optimization, Microsolvation, DFT, Machine

Learning.
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RESUMO

A microsolvatação tem sido sujeito de intenso estudo teórico e experimental com

implicações em diversas áreas como, por exemplo, qúımica atmosférica, processos biológicos,

membrana de permeação e transporte, dentre outros. Portanto, nesta Tese será desenvolvido

um estudo da microsolvatação de ı́ons por gases nobres. Especificamente, será estudada

a microsolvatação do ı́on Li+ por argônios, kriptônios e mistura desses átomos. Para tal

construção serão desenvolvidas análises que envolvem a construção da interação de dois e

três corpos de ı́ons metais-alcalinos com gases nobres, a partir do ajuste de funções poten-

ciais a partir de cálculos ab initios da energia eletrônica usando a metodologia CCSD(T).

A determinação das estruturas estáveis dos clusters se dará pela aplicação de um algoritmo

evolutivo (EA). O algoritmo evolutivo fará a busca dessas estruturas de baixas energias,

tanto do mı́nimo global como dos mı́nimos locais. No intuito de fortalecer o estudo, cálculos

de pós-otimização usando os métodos ab initios CCSD(T) e MP2 são também realizados.

Para o tratamento de agregados com número de gases nobres maiores, uma metodologia

DFT também é utilizada na etapa de pós-otimização, com o objetivo de realizar uma análise

Benchmark desses sistemas. Por fim, a partir de diversos mı́nimos locais gerados pelo algo-

ritmo evolutivo empregamos a técnica de Machine Learning para possibilitar a determinação

de regras de escolha dos melhores mı́nimos EA que apresente uma descrição eficiente da

paisagem energética dos diversos tamanhos de clusters.

Palavras-chave: Algoritmo Evolutivo, Otimização de Cluster, Microsolvatação, DFT, Ma-

chine Learning.
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Chapter 1

Introduction

Cluster analysis has provided an important opportunity for studies on the evolution

of physical and chemical properties of solvated systems with solvent size increasing in volume

[1]. This type is known as microsolvation; solvent molecules are succinctly added to the

system. They present a high computational cost, but also provide a detailed knowledge of

the phenomenon at the molecular level [2, 3, 4, 5]. The use of solvent microsolvation by

atoms instead of molecules makes the complexity smaller (by adding atoms step by step)

[6, 7, 8]. An example of this is the chromophore atoms in clusters of rare gases, which has

had considerable attention, to be considered as a model system to know the solvation at the

microscopic level [9].

Spectroscopy of elementary systems such as atoms or molecules trapped or inter-

acting with clusters has been the subject of continuous investigations [1, 10, 11]. One of the

areas of cluster study that presented a great relevance from the theoretical point of view, is

the alkaline atoms in mixture with rare gases. One of the reasons is the fact that its electronic

structure is easy to model [9].

The result of research into clusters of metal ions and noble gases can help under-

stand many fundamental problems in the fields of atomic and molecular physics, organic and

inorganic chemistry and biochemistry, such as nucleation phenomena and phase transitions.

These interactions gained significant interest because of the aspects of noble gases related to

1



Chapter 1. Introduction 2

their closed valence shields that make them attractive as a model system [7].

It is important to highlight that there are also experimental studies that are used

as reference for analysis of theoretical results. One of them is the mass spectroscopy; an

experimental technique to detect the stability of clusters to from magic numbers [7]. An

example is the ion cluster mass spectrum (H2)nLi+ constructed from the Li+ bombardment

on the static target H2.

One of the important fields of the clusters is the structures of low energies. A

global optimization process, which can be directly through ab initios or DFT calculations,

accomplishes the realization of these but the computational cost is high. An alternative of

lower cost is the use of evolutionary algorithms (EA), which has been shown success in the

search of low energy clusters [12].

From a theoretical point of view, mixed clusters have a greater structural complexity

than homogeneous ones, so it is more challenging to optimize geometry and its importance

in many contexts, resulting mainly in technological applications. Some case to be studied in

this work is an aggregate of the heterogeneous type. These complexities have to do with the

existence of isomers in the same geometry and structure, but they show different distributions

in the two types of atoms, of which they are not present in homogeneous clusters.

The mixture of rare gas clusters has received theoretical and experimental attention,

since they can be seen as prototype systems that comprise complex phenomena that occur at

the mesoscale level and therefore with relevance in nanotechnology. Some experimental stud-

ies have been developed for the problem of the formation of heterogeneous clusters involving

argon and krypton [13, 2, 14, 15].

Therefore, in this thesis we intend to develop a detailed study of the energetic

and geometric properties of the structures of clusters of low energies of alkaline-metal ions

with atoms of noble gases. The constructions of the clusters will be carried out by a global

optimization generated by an evolutionary algorithm constructed by a portuguese researchers

group [16]. This process depends on ab initio calculations to obtain the adjusted potential

energy surfaces, which in this work take into account the cases with interaction between

atoms to two and three bodies.
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The achievement of global and local minima by EA, will allow understanding the

landscape of low energies that encompass the structures. A complementary part in this work,

a study of cluster optimizations of the Cu-Rh transition metals, and also of a new strategy of

a ”self-adaptive” algorithm that looks for the clusters of lower energy and at the same time

develop structures that autonomously adapt to the addressed problem.

This work also aims at an analysis in two aspects; the first one refers to a more

comprehensive study of the cluster size that becomes limited due to computational time, so

the strategy to perform the re-optimization study by the DFT method and the second one

refers to an innovative study because, it was not found in the literature studies related to

energy calculation and mixture structure of Argon and Krypton clusters [17]. Hence, one of

the motivations of this work, to seek to study something still unexplored, in this aspect.

The thesis is structured as follows. In Chapter 2, we review the theory of the meth-

ods: Pertubation of Mollet-Plesset, Coupled Cluster and Density Functional Theory beyocnd

of the Evolutionary Algorithm. In Chapter 3 we discuss the study of alkali-ion microsolvata-

tion with argon and for discovering global miminum structures of transition metal Rh-Cu

binary cluster in a interation two-bodys. This chapter was inspired by the book chapter

“ Revealing energy landscapes of atomic clusters by applying adaptive bio-inspired algo-

rithms” published in the Apple Academic Press with the respective authors: Jorge Manuel

C. Marques, Wanderson S. de Jesus, Frederico V. Prudente, Francisco B. Pereira and Nuno

Lourenço [18]. In Chapter 4 we establish the comparison between the structures global and

local minimus of the Li+Arn and Li+Krn, by using potential energy new faces that including

two and three-bodys. This chapter was inspired by the paper “Exploring the first-shell and

second-shell structures arising in the microsolvation of Li+ by rare gases” published in the In-

ternational Journal of Quantum Chemistry with the respective authors: Wanderson S. Jesus,

Jorge Manuel C. Marques, Frederico V. Prudente and Francisco B. Pereira [13]. In Chapter

5, we have perfomance a research innovative; the solvatation of an alkali-ion by a binary

mixture solvent of rare gas atoms. Specifically, we lian the interest to know where we search

discovery, what noble gas atom occupy the first solvatation shell. This chapter was inspired

by the paper “Microsolvation of Li+ in a mixture of argon and krypton: unveiling the most
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stable structures of the clusters” published in the Journal Physical Chemistry A with the re-

spective authors: Wanderson S. Jesus, Frederico V. Prudente and Jorge Manuel C. Marques

[19]. In Chapter 6 we are performing a study with the goal of catch up the knowledge to big

clusters. For this we use o theory DFT and the tecnhiques Machine Learning for the clusters

Li+Krn. This one was inspired by the paper that are in submission process “Modeling micro-

solvation clusters with electronic-structure calculations guided by analytical potentials and

machine learning techniques” with the respective authors: Wanderson S. Jesus, Frederico

V. Prudente, Jorge Manuel C. Marques, Francisco B. Pereira and Nuno Lourenço [20]. In

Chaper 7 we present the conclusions of this thesis, as well as the perspectives of future work.



Chapter 2

Methodology

The purpose of this work is to demonstrate the development of techniques capable

of constructing optimized clusters efficiently, with the functionality of obtaining information

about geometric and energetic properties. To do so, we will outline the stages to be developed

in this thesis.

In (i) we aim to obtain a function that describes the potential energy surface to be

used in the evolutionary algorithm. According to figure 2.1, the cluster structures are initially

unknown as shown at the top of the diagram, they are of the type: binary with an alkaline

ion and varying the number of rare, tertiary gases with an alkaline ion and two rare gases

varying the number of atoms and binary transition metals with the same amount of atoms

in each cluster. Of these structures is taken into account the two and three-body interaction

between the atoms. In view of this, ab initio calculations are performed using the CCSD(T)

method by the package of the Gamess. The single-point results are used in the potential

function for an adjustment of the same, through Powell or GAfit [21] . Finally, from one

of these techniques we construct the potential energy surface to be used in the evolutionary

algorithm.

Step (ii) aims to optimize the clusters structures as represented at the top of figure

2.1 and from the function that describes the potential energy surface as represented at the

bottom of the same diagram. For this, in figure 2.2 the green box represents the techniques

5



Chapter 2. Methodology 6

used by the evolutionary algorithm to obtain optimized clusters. The algorithm generates

the optimized structures of lower energy called global minimum and still higher energy, the

local minimum. In addition, with this we extract information of structural and energetic

properties.

With the structures we intend to obtain a more detailed study, so in (iii) a POS-

OPTIMIZATION of the various minima (global and local) is carried out. According to figure

2.3 the post-optimization box represents a variety of information that it aims to obtain among

them structural and energy properties to be compared with GA and an efficient choice of local

and global minima (BEST MINIMA). For this purpose an MP2 optimization is performed

and in sequence energy single points calculations by the CCSD(T) method to clusters with

N = 5 atoms and MP2 with N = 8 atoms. Up to this step, we obtain information about the

energy and structural properties of the clusters that are used as comparisons with EA.

It is noticeable from the diagram that there is a computational limitation to perform

a CCSD(T)/MP2 study for larger clusters (N >8). That is why a path is necessary in order to

overcome this limitation. Therefore, it is necessary to return the structure of and perform ab

initios calculations by the DFT method since it demands lower computational cost. However,

in this process it is necessary to obtain an efficient functional/base, so it is used as a parameter

to choose the information of the method CCSD(T) ”[5]” and MP2 ”[8]” (See the Fig. 2.3).

Thus, with the choice of the best functional/base, the DFT calculation is given by the global

and local minima, which can now be for clusters larger than N = 8. Due to large number of

minima, and aiming to reduce the computational cost of the post-optimization by the DFT

method. It is necessary to use the Machine Learning method that will reduce the number of

minima to be analyzed in detail and thus obtain the best local and global minima that can

represent each size of clusters.
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Figure 2.1: Diagram - Obtaining Surface Energy Potential
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Figure 2.2: Diagram - Optimization cluster by Evolutionary Algorithm
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Figure 2.3: Diagram - Pos optmization by CCSD(T)/MP2 and by DFT

The diagrams give a brief summary of what is to be presented in detail in the course

of the thesis. In Chapter 3 that corresponds to steps (i) and (ii), we will see that according to

figure 2.1 the path to be demonstrated is the structure of clusters of alkaline-metal ions with

Ar atoms; Li+Ar, Na+Ar e K+Ar (at the top left of the figure), and Cu-Rh transition metals

(at the top right of the figure) initially unknown, where only the two-bodies interaction path

is considered of the potential energy surface. In addition, figure 2.2 is represented for this

chapter the whole process of using the Evolutionary Algorithm with an additive of a test of an

original self-adaptive algorithm, which seeks to develop structures that adapt autonomously

to the addressed problem. The work will demonstrate that GA improves the set of genetic
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operators and the distance measure that effectively maintains diversity by run optimization.

In order to obtain the structural and energetic properties of the above-mentioned structures,

a comparative analysis was performed between the three cluster types generated by GA with

two bodies of an ion with Ar. Moreover, in the transition metals (Rh-Cu)n, to verify the

distribution tendency of the atoms in the optimized structures.

Chapter 4 consists of steps (i), (ii) and partially of (iii). It has as its proposal to

present the researches of low energy structure for such, starting from alkaline metal structures

Li+Arn and Li+Krn for n=2 - 14, as the top one on the left side of figure 2.1, the interaction

paths of two and three atoms are considered to obtain the potential energy surface. In the

next process indicated by figure 2.2, the EA finds structures of global and local minima. The

generated clusters produce structural and energy information of the solvents Ar and Kr. The

comparison in the formations of the clusters described in the course of the chapter indicate

sizes of clusters that present difference between their structures. In addition, the analysis of

the global and local minima by the EA, will allow understanding the landscape of low energy

that encompasses the structures. In step (iii), the post-optimization process (figure 2.3) will

be performed by MP2 optimization and energy single point calculations CCSD (T) and MP2,

which results in structural and energy and that in this chapter ends in the comparison with

the results of the EA in which the clusters optimized by the EA and by a re-optimization

MP2, will guarantee a greater difference between the minima of energy re-optimized by MP2.

For chapter 5 steps (i) and (ii) are effective, with the clusters initially unknown

as exemplified by the central geometry at the top of figure 2.1 in which a binary solvent

(Ar(n-Krm), interacts with the Li+ ion. One of the great curiosities in this research is to

identify which noble gas tends to form the first layer of solvation of the cluster, this formation

will provide the understanding of structural and energetic properties, on the way solvents

surround the solute. EA generates geometries with all combinations of atoms of Ar and Kr

between N=1-10 and for N= 12-20 only structures with atoms of Ar = Kr. The study of

these clusters also seeks to present the energetic behavior of the structures when changing a

Kr and Ar atom between the first and second layers of solvation.

Chapther 6 will represent the culmination of the three stages, shown by figures 2.1,
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2.2 and 2.3. Since having a variety of results already presented in the previous chapters, this

will come with the intention of carrying out studies of larger clusters of Li+Krn, however as

observed in the diagram of figure 2.3 in which there is a computational cost limitation of

N=5 atoms for the CCSD (T) method and N=8 para MP2, for MP2, perform comparative

studies with the EA. We follow the path of the DFT method that will enable the study of

clusters larger than N=8 and with the aid of the Machine Learning technique will enable an

efficient choice of minima.

The sections that follow in this chapter are responsible for describing the theory of

each method that justifies its use in the steps of the steps described by the diagrams shown

above.

2.1 Mollet-Plesset Pertubation Theory

The study of pertubation theory is developed in formal terms of the Hamiltonian

and the full wave function and not only applied to one- or two-body systems, but is also

valid for many-body systems, where it presents a wide variety of approximations, notations,

and variations that have been used. Therefore, we must derive the equations from the basic

pertubation theory and its representations of many bodies of various complementary forms.

Pertubative methods are schemes used to obtain electron correlation energy and are one of

the powerful tools for dealing with problems of many bodies [22, 23].

Among the pertubative methods, the most popular is the Rayleigh-Schrödinger per-

tubation theory - RSPT, which presents as a central idea to separate the Hamiltonian into

two parts. The first one is the main one because it has known auto functions called the

unpertubed Hamiltonian and the second part is the perturbed, characterized by a small per-

tubation in a way to alter the first one. Since the pertubation is small, it is expected that

there is a tendency of convergence of the pertubative series so that the contributions of lower

order are included. Therefore, to begin the development of the Rayleigh-Schrödinger theory,

we present a Schrödinger equation of unknown solution.
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HΨn = EnΨn (2.1)

e

H(0)Ψ(0)
n = E(0)

n Ψ
(0)
0 (2.2)

where H(0) can be solved exactly and differs little from H, so

H = H(0) + λV, (2.3)

where V is the second part mentioned at the beginning of the theory, the pertubation, and

λ is a facilitator parameter for the ordering of the corrections in the energy and in the wave

function. And the eigenvalues and auto functions of H are obtained by H(0) and by the

matrix elements of V on the basis of the autofunctions of H(0).

By (2.3), both the energy En = E0(λ) and the perturbed wave autofunction Ψn =

Ψ0(λ, q), depend on λ taking q as the coordinates.

Therefore, by expanding E0(λ) around λ=0,

E0(λ) = E0(0) +

(
dE

dλ

)
λ=0

λ+
1

2!

(
d2E

dλ2

)
λ=0

λ2 + ...

= E
(0)
0 + λE

(1)
0 + λ2E

(2)
0 + ... (2.4)

And in the same way by expanding the wave function we have,

Ψ0 = Ψ
(0)
0 + λΨ

(1)
0 + λ2Ψ

(2)
0 + ... (2.5)

Let us consider that the pertubed system is non-degenerate, that H and H(0) are

Hermitian, and the pertubed auto functions are orthonormal,

< Ψ
(0)
i |Ψ

(0)
j >= δij. (2.6)

Therefore, replacing equations (2.3), (2.4) and (2.5) in (2.1), results,
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(H(0) + λV )Ψn = EnΨn

(H(0) + λV )(Ψ
(0)
0 + λΨ

(1)
0 + λ2Ψ

(2)
0 + ...) = (E

(0)
0 + λE

(1)
0 + λ2E

(2)
0 + ...), (2.7)

separating the equations in terms that accompany the order of λ,

λ0 → H(0)Ψ
(0)
0 = E

(0)
0 Ψ

(0)
0 , (2.8)

λ1 → H(0)Ψ
(1)
0 + VΨ

(0)
0 = E

(1)
0 Ψ

(0)
0 + E

(0)
0 Ψ

(1)
0

(H(0) − E(0)
0 )Ψ

(1)
0 = (E

(1)
0 − V )Ψ

(0)
0 , (2.9)

λ2 → H(0)Ψ
(2)
0 + VΨ

(1)
0 = E

(0)
0 Ψ

(2)
0 + E

(1)
0 Ψ

(1)
0 + E

(2)
0 Ψ

(0)
0

(H(0) − E(0)
0 )Ψ

(2)
0 = (E

(1)
0 − V )Ψ

(1)
0 + E

(2)
0 Ψ

(0)
0 . (2.10)

Therefore, in a generalized way,

λn → H(0)Ψ
(n)
0 + VΨ

(n−1)
0 = E

(0)
0 Ψ

(n)
0 + E

(1)
0 Ψ

(n−1)
0 + E

(2)
0 Ψ

(n−2)
0 + ...+ E

(n)
0 Ψ

(0)
0

(H(0) − E(0)
0 )Ψ

(n)
0 = (E

(1)
0 − V )Ψ

(n−1)
0 + E

(2)
0 Ψ

(n−2)
0 + ...+ E

(n)
0 Ψ

(0)
0 . (2.11)

Multiplying equations (2.8), (2.9), (2.10) and (2.11) by < Ψ
(0)
0 |, equation (2.8) be-
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comes null and consequently,

E
(1)
0 =< Ψ

(0)
0 |V |Ψ

(0)
0 >

E
(2)
0 =< Ψ

(0)
0 |V − E

(1)
0 |Ψ

(1)
0 >

E
(3)
0 =< Ψ

(0)
0 |V − E

(1)
0 |Ψ

(2)
0 > −E(2)

0 < Ψ
(0)
0 |Ψ

(1)
0 >

...

E
(n)
0 =< Ψ

(0)
0 |V − E

(1)
0 |Ψ

(n−1)
0 > −...− E(n−1)

0 < Ψ
(0)
0 |Ψ

(1)
0 > (2.12)

Equations (2.12) can be represented in simplified form using the intermediate nor-

malization, where equations

< Ψ
(0)
0 |Ψ

(0)
0 >= 1 (2.13)

and substituting the expansion of equation (2.5) in (2.13),

< Ψ
(0)
0 |Ψ

(0)
0 > +λ < Ψ

(0)
0 |Ψ

(1)
0 > +λ2 < Ψ

(0)
0 |Ψ

(2)
0 > +... = 1 onde, < Ψ

(0)
0 |Ψ

(n)
0 >= δn0.

(2.14)

The equations (2.12) are then identified by,

E
(1)
0 =< Ψ

(0)
0 |V |Ψ

(0)
0 >

E
(2)
0 =< Ψ

(0)
0 |V |Ψ

(1)
0 >

E
(3)
0 =< Ψ

(0)
0 |V |Ψ

(2)
0 >

...

E
(n)
0 =< Ψ

(0)
0 |V |Ψ

(n−1)
0 > . (2.15)

In many cases, it is still difficult to solve them. One option is to perform an expansion

of the function Ψ
(n)
0 based on the unpertubed problem { Ψ

(0)
i } which constitute a complete

set. Thus, the order 1 wave function in a completed way is,

Ψ
(1)
0 =

∑
i 6=0

c
(1)
i Ψ

(0)
i (2.16)
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substituting (2.16) in (2.9),

∑
i 6=0

c
(1)
i (H(0) − E(0)

0 )Ψ
(0)
i = (E

(0)
0 − V )Ψ

(0)
0 (2.17)

and applying < Ψ
(0)
j |,

< Ψ
(0)
j |
∑
i 6=0

c
(1)
i (H(0) − E(0)

0 )|Ψ(0)
i >=< Ψ

(0)
j |(E

(0)
0 − V )|Ψ(0)

0 >

c
(1)
j =

< Ψ
(0)
j |V |Ψ

(0)
0 >

E
(0)
0 − E

(0)
j

. (2.18)

The complete wave function of the first order is described by,

Ψ
(1)
0 =

∑
i 6=0

< Ψ
(0)
i |V |Ψ

(0)
0 >

E
(0)
0 − E

(0)
i

Ψ
(0)
i (2.19)

and consequently the energy of correction in a second order

E
(2)
0 =

∑
i 6=0

| < Ψ
(0)
0 |V |Ψ

(0)
i > |2

E
(0)
0 − E

(0)
i

. (2.20)

Thus, we have the correction in energy and wave function that can be obtained from

information about a unperturbed problem. In addition, by the representation of the second

order energy correction, we can observe that the energy for this case will be negative, taking

the ground state as reference.

So far, the development of the discussion presents results of up to second order

energy corrections, considering that this is our focus of study in this work.

Considering the information presented so far, we can present the theory of pertuba-

tion of many bodies of Moller-Plesset, better known as MBPT.

The MBPT, as already foreseen, aims to obtain the electron correlation energy,

Ecorr = Eexata − EHF (2.21)
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defined by the difference of the exact energy and energy obtained by the Hartree Fock (HF)

method.

The established proposal by Moller Plesset was to choose a partition from the elec-

tronic Hamiltonian, the unpertubed Hamiltonian, as a summation of the Fock operator,

H(0) =
n∑
i=1

F (i) (2.22)

and the sum in i is on the electrons of the system. In the case of the HF wave function, Φ0,

which is an auto function of H(0), we have

H(0)Φ0 =
∑
c

εcΦ0 (2.23)

where c represents the sum of the spin-orbitals present in the determinant HF.

To obtain the complete spectrum of H(0), we will use the concept of excited deter-

minant or substituted determinant, where one or more occupied spin-orbitals represented by

a,b,c are exchanged by one or more virtual spin-orbitals r,s,t. As an example, applying the

Hamiltonian operator not disturbed in a simply substituted determinant, and in a simply

substituted determinant,

H(0)Φr
a = (

∑
c

εc − εa + εr)Φ
r
a (2.24)

and in a doubly substituted determinant

H(0)Φrs
ab = (

∑
c

εc − εa − εb + εr + εs)Φ
rs
ab. (2.25)

Therefore, pertubative corrections in energy and wave function can be obtained from

these determinants. In addition, the Hamiltonian pertubed part is described as being

V = H −H(0) =
∑
i

h(i) +
∑
i<j

1

rij
−
∑
i

F (i) (2.26)

being the first term of the right the representation of the operator of 1 electron, that de-
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scribes the kinetic energy of the electrons and the interaction of the electron with the nucleus

of the atom, the second term represents the electron-electron interaction and the latter is

characterized by the operator of Fock , defined by

F (i) =
∑
i

h(i) +
∑
c

[Jc(i)−Kc(i)] (2.27)

where Jc and Kc are respectively identified as Coulomb and exchange operators [22].

So

V =
∑
i<j

1

rij
−
∑
i

vHF (i) (2.28)

vHF (i) =
∑

c[Jc(i) − Kc(i)] where the interaction equation is represented as 2 times in the

average, and the first term in the left equation, the exact electron-electron to be defined in

a simplified way by

V = O2 −O1 (2.29)

explaining O1 and O2 as an interaction of 1 and 2 electrons.

Hence, in addition to having a role of correcting the double counting of the electron-

electron interaction in H(0), V also gives a detailed description of the individual interactions

between the electrons.

To calculate the pertubative corrections in energy it is necessary to calculate the

matrix elements of the types < Φ|O1|Φ̃ > and < Φ|O2|Φ̃ >. By using Slater’s rule, (Szabo e

Ostlund, 1989) in the case that Φ = Φ̃ = Φ0

< Φ0|O1|Φ̃0 >=
∑
a,c

< ac||ac > (2.30)

being < ac||ac > an alternative notation to represent the permutations in the notation of

Dirac [22], where a is the occupied spin-orbital, and

< Φ0|O2|Φ̃0 >=
1

2

∑
a,c

< ac||ac > . (2.31)
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Therefore,

< Φ0|V |Φ̃0 >=< Φ0|O2 −O1|Φ̃0 >= −1

2

∑
a,c

< ac||ac > . (2.32)

In matrix elements of V , between an HF determinant and a simply substituted

determinant we have

< Φ0|O1|Φr
a >=< Φ0|O2|Φr

a >=
∑
c

< ac||rc > (2.33)

we conclude that

< Φ0|V |Φr
a >=< Φ0|O1 −O2|Φr

a >= 0. (2.34)

Using the same theory one can also obtain the calculation of the matrix elements of

V between the HF determinant and the doubly substituted one, so

< Φ0|O1|Φrs
ab >= 0 (2.35)

this matrix element having a null value because the operator, when applied to the doubly

substituted array, is only 1 electron. And

< Φ0|O2|Φrs
ab >=< ab||rs >, (2.36)

so

< Φ0|V |Φrs
ab >=< ab||rs > . (2.37)

In situations where the prevailing differ by 3 or more orbital the solutions are always

zero. Matrix elements between doubly substituted determinants, with the simply, triplicate

or quadruple substituted, are not necessarily null because they may differ by two spin-orbitals

or more.

We can then establish the MBPT power corrections as follows:
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• zero-order energy

E
(0)
0 =

∑
c

εc (2.38)

• correction up to the first order, given by equation (2.32)

E
(0)
0 + E

(1)
0 =

∑
c

εc −
1

2

∑
a,c

< ac||ac > (2.39)

• second-order correction, given by equation (2.20)

E
(2)
0 =

∑
a<b

∑
r<s

| < Ψ
(0)
0 |V |Ψrs

ab > |2

E
(0)
0 − Ers

ab

(2.40)

since only the doubly substituted determinants interact with the Φ0 determinant.

As we can observe and define by the theories, the equation up to the first order

energy is exactly the Hartree Fock energy, so the first-order energy MBPT has no correction.

Thus, justifying the fact that it only makes use of second order energy corrections in order

to obtain the electron correlation energy.

The second order correction energy, equation (2.40) can also be represented by the

substituting equation (2.37), (2.23) and (2.24):

E
(2)
0 =

∑
a<b

∑
r<s

| < ab||rs > |2

εa + εb − εr − εs
. (2.41)

We therefore conclude that for the case of interest in this work, the MBPT(2) cal-

culation, corresponding to the energy calculation of electron correlation of Moller-Plesset

perturbation theory for the second order energy correction bodies, it can be defined general-

ized by

EMBPT (2) = EHF + E
(2)
0 (2.42)

which as we already know to be a negative energy, will be smaller than the HF energy.

The MBPT(2), better known as MP2 has shown today that it is the most popular

pertubative approach. This is due to its outstanding performance with good results and
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modest computational resources[22].

2.2 Coupled Cluster

It is a complementary method to the MBPT (Moller-Plesset Pertubation Theory),

able to provide electron correlation energy in a systematic and quite efficient way. It has more

subtle effects of electronic correlation and results with high level of competitiveness. The

proposal of this method is to treat the many electrons by separating them into several clusters

with few electrons. In the clusters, the interaction between their electrons is calculated; this

process is done with each of the clusters and then the interaction between the clusters is

calculated. This type of approach can be performed by systems of non-interacting atoms

[22].

In order to represent a mathematical mechanism that demonstrates the validity of

this theory, we will begin the discussion by approaching two helium atoms [23].

The description of the state of this system can be defined by two orthonormal

functions of two electrons φ0(i) and χ(i) respectively representing the zero-order function

and the excitation function of 2 electrons on φ0(i), where the atoms are non-interacting and

their functions are non-orthogonal, that is,

t̂iφ0(i) = τχ(i) (2.43)

and

t̂iχ(i) = 0 (2.44)

where t̂i is the excitation operator of two electrons in a single atom and has no effect on the

base functions of other atoms,

t̂iφ0(j) = φ0(j) e t̂iχ(j) = χ(j). (2.45)
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Generally, in the wave function of N atoms, we define the operator,

T̂2 =
∑
i

t̂i (2.46)

which excites the two electrons at the same time. Thus by applying the operator in a

fundamental wave function,

T̂2Φ0 =
∑
i

t̂iΦ0 = τ
∑
i

Φi, (2.47)

T̂2Φi =
∑
j

t̂jΦi = τ
∑
j(j 6=i)

Φij = τ
∑
j

Φij; Φii = 0 (2.48)

being Φi the double excitation function, and the others are a consequence of the same logic.

Soon,

T̂ 2
2 Φ0 = τ

∑
i

T̂2Φi = τ 2
∑
ij

Φij, (2.49)

T̂ 3
2 Φ0 = τ 2

∑
ij

T̂2Φij = τ 3
∑
ijk

Φijk, (2.50)

so the exact solution of N non-interacting He atoms can be described by,

Ψ = Φ0 +
∑
i

τΦi +
1

2!

∑
ij

τ 2Φij +
1

3!

∑
ijk

τ 3Φijk

= Φ0 + T̂2Φ0 +
1

2!
T̂ 2
2 Φ0 +

1

3!
T̂ 3
2 Φ0 + ...

= eT̂2Φ0. (2.51)

The expression of Ansatz Ψ = eT̂2Φ0 is characteristic of the coupled cluster approx-

imation and τ is the unknown coefficient of T̂2. To obtain an equation that determines τ and

the corresponding energy, we apply the Schrödinger equation, in the form

(Ĥ − E)eT̂2Φ0 = 0. (2.52)
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Applying < Φ0| e < Φi|,

< Φ0|(Ĥ − E)eT̂2|Φ0 >= 0,

< Φi|(Ĥ − E)eT̂2|Φ0 >= 0 (2.53)

using (2.47), (2.48), (2.49) and (2.50) and mathematical mechanisms cited by reference [23]

we have,

< Φ0|EeT̂2|Φ0 >= E < Φ0|Φ0 > +E < Φ0|T̂2|Φ0 > +... = E,

< Φi|EeT̂2|Φ0 >= E < Φi|Φ0 > +E < Φi|T̂2|Φ0 > +
1

2
E
∑
jk

< Φi|τ 2|Φjk > +...

= 0 + Eτ < Φi|Φj > +0 + ... = Eτ. (2.54)

So,

< Φ0|ĤeT̂2|Φ0 >=< Φ0|Ĥ|Φ0 > + < Φ0|ĤT̂2|Φ0 > +
1

2
< Φ0|ĤT̂ 2

2 |Φ0 > +...

= E0 + τ
∑
i

< Φ0|Ĥ|Φi > +0

= Nε0 +Nβτ, β =< Φ0|Ĥ|Φi >; and E0 = Nε0. (2.55)

E0 and ε0 represent the fundamental energy respectively of N atoms and a single atom. And

< Φi|ĤeT̂2|Φ0 >=< Φi|Ĥ|Φ0 > + < Φi|ĤT̂2|Φ0 > +
1

2
< Φi|ĤT̂ 2

2 |Φ0 > +...

= β ∗+τ
∑
j

< Φi|Ĥ|Φj > +
1

2
τ 2
∑
jk

< Φi|Ĥ|Φjk > +...

= β ∗+τ
∑
j

< Φi|Ĥ|Φi > +
1

2
τ 2
∑
j

< Φi|Ĥ|(Φij + Φji) > +...

= β ∗+τ [(N − 1)ε0 + α] + τ 2(N − 1)β. (2.56)

Substituing in equation (2.53), we obtain the pairs of simultaneous equation for τ
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and E,

< Φ0|ĤeT̂2|Φ0 >= E < Φ0|eT̂2 |Φ0 >

N(ε0 + βτ) = E, (2.57)

< Φi|ĤeT̂2|Φ0 >= E < Φi|eT̂2|Φ0 >

β ∗+τ [(N − 1)ε0 + α] + τ 2(N − 1)β = Eτ. (2.58)

Applying operations between the equations (2.57) and (2.58), we have

β ∗+τ(α− ε0)− βτ 2 = 0 (2.59)

Then we conclude that τ is independent of N atoms, and, by eq. (2.57), E depends

on N as required by the extensity theory. Thus, the coupled cluster solution is in fact exact

for N atoms problems, because it compares the CI, configuration, and therefore determines

the exact response in the form eT̂2Φ0 for the non-interacting helium atoms.

For a generalized system the exact wave function can be described by,

Ψ = eT̂Φ0 (2.60)

where T̂ is the excitation operator. The Ansatz exponential is the operator that converts the

zero-wave function into an exact function and manifests the extensity property in the wave

operator, for this it is considered two non-interacting subsystems A and B, and expressed in

terms of localized orbitals of 2 subsystems. If the zero order wave function for the system is

separable,

Φ0(A...B) = Φ0(A) + Φ0(B) (2.61)
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and if for the system, T̂ is additive,

T̂ (A...B) = T̂ (A) + T̂ (B). (2.62)

The total wave function is:

Ψ(A...B) = eT̂ (A...B)Φ0(A...B) = eT̂ (A)+T̂ (B)

= eT̂ (A)Φ0(A)eT̂ (B)Φ0(B)

= Ψ(A)Ψ(B). (2.63)

This separation of the wave function guarantees the additivity of the energy, therefore

Ĥ(A...B)Ψ(A...B) = [Ĥ(A) + Ĥ(B)]Ψ(A)Ψ(B)

= [Ĥ(A)Ψ(A)Ψ(B) + Ψ(A)Ĥ(B)Ψ(B)]

= [E(A) + E(B)]Ψ(A...B). (2.64)

This is a weaker condition than the previous one and is preferred in the definition

of extensity.

With the Coupled Cluster wave function defined, the excitation operator can be

described by,

T̂ = T̂1 + T̂2 + T̂3 + ... (2.65)

where T̂1 corresponds to the excitation of a body, T̂2 of two bodies, etc., so that the cluster

operators are defined by

T̂1 =
∑
ia

tai â
tî

T̂2 =
1

(2!)2

∑
ijab

tabij â
tb̂tĵ î =

1

4

∑
ijab

tabij {âtîb̂tĵ}

T̂3 =
1

(3!)2

∑
ijkabc

tabcijk â
tîb̂tĵĉtk̂ =

1

36

∑
ijkabc

tabcijk{âtîb̂tĵĉtk̂} (2.66)
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etc, where tab...ij... the coefficients to be determined, referenced as the amplitudes of the corre-

sponding operators and the strings of creation and annihilation operators are automatically

in normal-ordered form. In general the operator is:

T̂m =
∑
(m!)2

tab...ij... {âtîb̂tĵ...}. (2.67)

If the exponential wave operator is expanded in Taylor series,

eT̂ = 1 + T̂ +
1

2
T̂ 2 +

1

3!
T̂ 3 + ... (2.68)

using the expansion in equation (2.65), we obtain

Ψ = Φ0 + T̂1Φ0 + T̂2Φ0 + ...+
1

2
T̂ 2
1 Φ0 + T̂1T̂2Φ0 +

1

2
T̂ 2
2 + ... (2.69)

and it is notable that the different operators of T̂m commute. The contributions of the wave

function in the form T̂mΦ0 are called connected clusters while those involving products of

cluster operators such as 1
2
T̂ 2
2 Φ0 or T̂1T̂2Φ0 are called disconnected clusters.

The term T̂2Φ0 is the most important cluster-connected contribution, due to the

nature of two Hamiltonian electrons. While in terms of contribution of disconnected clusters

the most important is 1
2
T̂ 2
2 Φ0, where T̂2 can become more important with increasing system.

The term connected to T̂3Φ0 is important in systems with high electron density. And the

terms T̂4Φ0, T̂5Φ0, T̂6Φ0 etc, are generally of small importance. May be relevant in special

cases.

Among the Coupled Cluster approximations, the simplest is the Double Coupled

Cluster (CCD), where T̂ is truncated for

T̂CCD = T̂2 (2.70)

Thus the CCD wave function includes only the connected and disconnected contributions of
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clusters involving T̂2, so

ΨCCD = eT̂2Φ0 = Φ0 + T̂2Φ0 +
1

2
T̂ 2
2 Φ0 +

1

3!
T̂ 3
2 Φ0 + ... (2.71)

The most common extension of this model is simple and double coupled-cluster

(CCSD),

T̂CCSD = T̂1 + T̂2 (2.72)

that it was even necessary to use it in some calculations.

And the extension CCSDT - coupled cluster of single, double and triple excitations,

recognized as an excellent approximation of the exact wave function,

T̂CCSDT = T̂1 + T̂2 + T̂3 (2.73)

Although it is a more sophisticated approach, the CCSDT has some computational

issues that makes it a rather labor-intensive computational cost method.

Therefore, it is necessary to use approximate and accessible models, which in the

case of this work was used the CCSD(T), known to be a method of partial inclusion of triple

substitutions, where there is no great increase in computational cost. The method is propesed

by Gauss and Cremer (1988), which is given by the inclusion of triple partial substitutions

in CCSD [22, 24, 25].

2.3 Density Functional Theory - DFT

The DFT method, also known as the density functional theory, has become a very

efficient computational simulation strategy in the study of the electronic structure of atoms

and molecules. Secondly, because it makes possible the calculation of systems and sizes of

more than twenty atoms, with an acceptable physical and chemical precision, second, because

it presents a computational cost that sometimes represents a fraction, compared to the MBPT

and coupled cluster method. Things that have driven the development of this method are
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more accurate results of exchange-correlation functionals and numerical integration efficient

algorithms. Still emphasizing the importance of the implementation of DFT, it is worth

noting that commercial use contributes significantly to the popularization and expansion of

its use in the field of atomic and molecular physics such as GAMESS and NWCHEM [22].

Its formal development arose in 1964, in the publication of the theorems of Hohen-

berg and Konh [26]. Its use is applicable in many electron systems, which with some degree

of approximation can become a solvable problem. The purpose of the method is to have as

a fundamental object. The total electronic density ρ(r), considering that the Schrödinger

equation of 3N variables (without considering the spin) can be described as an electronic

density equation of only three variables.

Konh-Shan’s Theorem proposes two ideas for the construction of theory. First, the

external potential v(~r) sense by the electrons is a unique functional of the electronic density

ρ(~r), and the electronic density of a system can determine the external potential and the

number of electrons N . To prove this, we start from an electronic Hamiltonian,

Ĥ = T̂ + Û + V̂ , (2.74)

being T̂ the kinetic energy, Û the potential electron-electron energy and V̂ the external

potential energy. And there is still a independence of the terms in study, v(~r), ρ(r), N and

Ĥ.

Suppose then that there is an external potential v′(~r), which results in the Hamil-

tonian Ĥ ′ and the wave function φ̂′, and leads to the same density ρ(~r). By the variational

theorem, the energy E starting from the wave function φ of the system under study can be

described by,

E = 〈φ|T̂ + Û + V̂ |φ〉 < 〈φ′|T̂ + Û + V̂ |φ′〉 e

E ′ = 〈φ′|T̂ + Û + V̂ ′|φ′〉 < 〈φ|T̂ + Û + V̂ ′|φ〉 (2.75)

or,

〈φ|Ĥ|φ〉 < 〈φ′|Ĥ|φ′〉 = 〈φ′|Ĥ ′|φ′〉 < 〈φ′|V̂ − V̂ ′|φ′〉. (2.76)
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Thus, the external potential matrix is

〈φ|V̂ |φ〉 =

∫
ρ(~r)v(~r)d3r. (2.77)

In which ρ(~r) = 〈φ|
N∑
i=1

δ(~r − ~ri)|φ〉 e V̂ =
N∑
i=1

v(~ri) . So, from the equation (2.75)

we obtain,

E < E ′ +

∫
[v(~r)− v′(~r)]ρ(~r)d3r

E ′ < E +

∫
[v′(~r)− v(~r)]ρ(~r)d3r (2.78)

then,

E + E ′ < E ′ + E. (2.79)

As we define that the electron density is the same for v(~r) = v′(~r) we conclude

something absurd φ 6= φ′. Thus for this to occur, the unit of ρ(r) requires to consider φ = φ′.

Hence the first theorem states that the density of ρ(r) of the ground state must contain the

same information of the wave function of the state in question. We can then represent a

unique function of density by the representation of a physical observable,

O = 〈φ|Ô|φ〉 = O[ρ(r)]. (2.80)

A second theorem established by Kohn-Sham states that: the fundamental state

energy E0[ρ] is minimal for the exact density ρ(r) that is, from the electronic density of the

ground state we obtain the minimum value of E[ρ] which is a functional of ρ(~r),

E[ρ] = 〈φ|T̂ + Û + V̂ |φ〉. (2.81)

To justify this, it is assumed that ρ0 is a density of Ĥ = T̂ + Û + V̂ and which may



Chapter 2. Methodology 29

have a density ρ(~r) , only determined by the state φ. Soon

ρ 6= ρ0;φ = φ0, E > E0

andifρ = ρ0;φ = φ0, E = E0. (2.82)

We rewrite equation (2.81) as,

E[ρ] = F [ρ] + 〈φ|V̂ |φ〉; F [ρ] = 〈φ|T̂ + Û |φ〉 (2.83)

In analogy we have

E[ρ0] = F [ρ0] + 〈φ0|V̂ |φ0〉 (2.84)

in which φ0 is the fundamental state wave function and F [ρ] is defined as the universal

functional. Knowing that both electronic densities are determined by external potential, we

apply the variational theorem,

E[φ0] < E[φ] (2.85)

F [ρ0] + 〈φ0|V̂ |φ0〉 < F [ρ] + 〈φ|V̂ |φ〉. (2.86)

Assuming then the affirmation of the second theorem,

E[ρ0] < E[ρ]. (2.87)

In this way we demonstrate in both theorems how to determine the fundamental

state, from a given external potential, using the electronic density instead of the wave func-

tion. For most problems of atomic and molecular physics, including for this work the external

potential is already established, aiming to perform calculations of the electronic properties,

making use of artifices proposed by the two theorems.

In the last 10 years, the problems of DFT have become more evident [27], because

they are not able to describe the dispersion caused by non-covalent interactions. Therefore,

the corrections of Grimme D3, in functional DFT has emerged as the most popular tool to
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describe non-covalent interactions (DFT-D) because of the low cost of corrections calculations

and because they are in accordance with ab initio and experimental results [27, 28].

DFT-D takes into account a pair of potential atoms that are added to standard

Kohn-Sham results. There are some versions of the Grimme fixes, which will be used in this

work is the DFT-D3. There is a more up-to-date correction to DFT-D3 (BJ), but as we

will use NWCHEM, this does not allow us to perform DFT calculations with the proposed

functional and bases for this type of correction, but as will be presented by theory and by the

results in this work, an efficient and satisfactory method for calculations is shown. Therefore

according to theory, the correction of Grimme DFT-D3, has the total energy (EDFT−D3)

described by,

EDFT−D3 = EKS−DFT − Edisp. (2.88)

Where EKS−DFT EKS-DFT is the self-consistent Kohn-Sham energy described by

equation (2.86) and,

Edisp = E(2) + E(3) (2.89)

in which, E(2) is a two-body and E(3) three-body term. Specifically,

E(2) =
−1

2

∑
A 6=B

∑
n=6,8,10

Sn
CAB
n

Rn
AB

fdamp(RAB), (2.90)

where the sum is over all the pairs of atoms of the CAB
n , system, which is the mean of the

n-order scattering coefficient (n=6,8,10...) for atomic pairs AB and RAB and the internuclear

distance . The Sn factor is of global scale (functional dependent) that can be used to adjust the

repulsive behavior correction of the density functional exchange (DF) correlation choice. But,

the key ingredient of DFT-D3 is the damping function (fdamp), which determines the behavior

of small variation of the dispersion correction and is necessary to avoid singularities in small

RAB and effects of double counting of correlations of electrons of intermediate distances,

fdamp(RAB) =
1

1 + 6( RAB

SR,nR0AB
)−αn

(2.91)

where SR,n is a function dependent on the radius of cut R0AB and α is the parameter that
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determines the slope of the function for small RAB.

And on the other hand the terms of three bodies is,

E(3) =
∑

ABCfd,3(RABC)EABC (2.92)

where the sum is over all triple ABC atoms of the system, and EABC is

EABC =
CABC

9 (3cosθacosθbcosθc + 1)

(RABRACRBC)3
, (2.93)

called a mutual Axilrod-Teller or triple dipole, whose cos θa, cos θb and cos θc are the internal

angles of the triangle formed by RAB, RAC and RBC and CABC
9 is the triple dipole constant.

According to the reference [29] the DFT-D method is considered as robust and has

been tested meticulously and applied sucetively now in millions of different systems, it has

been what combines the best properties [30, 31, 32, 33].

Comparing revisions [31, 34] and other DFT-D3 implementations [35, 36] versions

have the following advantages and properties according to [29]:

• We calculate the least empirical and the most important parameter are first by Kohn-

Sham standards.

• Approach is asymptotically correct with all DFT’s for finite systems or infinite non-

metallic systems. It determines the almost exact energy dispersion for a weakly inter-

acting neutral atom gas and small interpolations for molecular regions.

• It performs a consistent description of all chemically relevant elements of the periodic

system (nuclear charge = 1-94).

• The dispersion of coefficients of specific atomic pairs and cutting radius are explicitly

calculated.

• The dispersion depends on the number of coordinates; these do not rely on the infor-

mation of the connectivity of atoms.
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• It performs similar or better accuracy for lightweight molecules and better description

of heavier metal systems.

2.3.1 The funtionals and basis to DFT

The development of new and better correlation functional has become a promising

pursuit in the Density Functional theory - DFT [37] . With this in view, we went in search

of functional literature that could be tested and could represent the studied system well. In

particular, we chose to work with 5 functional ones that have presented good results.

The first is the PW91 functional that makes use of the generalized gradient approx-

imations (GGA). In the GGA, it is considered that the densities vary little or moderately

over the space so that the exchange and correlation functional around the electron has the

first principles of expansion in the density gradient. These expansions are realistic close to

the electrons, but not distant. GGA is based on two limiting strategies: adjustment of some

experimental datasets and realization of a number of known physical constraints. In this case,

the functional to be tested is xperdew91 (named by NWCHEM), and its choice is because

it does not present semiempirical parameters and because it adds theoretical refinements in

the limits of small and large gradients [38, 39].

The PBE is a functional GGA introduced by Perdew, Burke and Ernzerhof [40] in

which all parameters are fundamental constants. It is constituted by the Perdew-Wang func-

tional correlation and a new exchange contribution. This functional is expected to provide

comparable quality results for different amplitudes of chemical systems. There are several

publications that attest to the good results of this functional [41, 42, 43].

The functional B3LYP is a hybrid method of functional combining, among them

the exact exchange energy[44], Becke’s gradient correction [44] and Perdew-Wang’s gradient

correction [38]. Besides, it is a functional composed of three semi-empirical coefficients to be

determined by an appropriate adjustment of experimental data [45]. In particular, it is one

of the most commonly used functionalities in the literature.

The Slater-VWN5 is a functional represented by the Slater’s exchange, plus the
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VWN5 correlation. The Slater’s exchange that considers an atom around a sphere and

within each of the spheres, replacing the exact potential by a spherical average and in the

region between the spheres the potential is replaced by a constant; the same if it is a molecule.

[46, 47].

M08-HX is the conformation that the optimization procedures work well for data

outside the training set. This functional is an improvement in cases of atomic energies, large

molecules and non-covalent interaction energies among others [37, 48, 49]. The M08-HX [50]

is characterized by an improvement of the M06-2X [51], and is part of functional known as

the functional ones of Minnesota, developed by the group of Prof. Donald Trulhar, from the

University of Minnesota.

In an ab initio study of the molecule electron structure of the exact solution from

the non-realist Schrödinger equation requires a complete treatment of N -electrons and a

complete expansion of a set bases. The use of a complete set bases is impractical. The most

powerful strategy is the approximation of the exact solution Schrödinger, equation, from a

selection to a possible expanded set of bases. This will depend on the size of the molecular

system and the treatment of N -electrons. In the case of the DFT method, a specific study

of the Li+Krn cluster will be carried out.

For this type of system, the bases denominated by the NWCHEM as: cc-pVDZ,

aug-cc-pVDZ, aug-pcseg-1 and aug-pcseg-2 will be treated.

The set bases cc-pVDZ and aug-cc-pVDZ (D indicates the second polarization level)

for the Lithium consists of: (i) generalized contraction of the HF orbitals, (ii) additional

primitive functions step in relation to the corresponding s e p em relação aos correspondentes

conjuntos HF (sp), (iii) spherical harmonic contractions of the sets of the highest angular

functions (dfgh...), (iv) increased functions required to describe the effects of core-valence

correlation and / or anionic characteristics (supplier of negative ions - our case study the

Li+) [52].

While the base cc-pVDZ is a primitive set of HF (sp) determined for optimizations

of polarized functions to describe correlation effects, the base aug-cc-pVDZ (pointed above

in item (iv)) is intended to cover more spaces wide features in the use of base functions with
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additional diffuse characteristics. They are necessary to accurately describe the affinity of

electrons, properties of electric fields such as permanent electrical moments and polarizability,

and long-range interaction [52, 53, 54].

For the Kr (Krypton) atom, the bases follow the equivalent principle, in order to

allow a better flexibility and in the description of the atomic orbitals, the general contraction

method of Raffenitti [55] was used. These approximations have been used to develop con-

sistent base sets for atoms such as Kr [56]. It is important to note that for ab initios MP2

and CCSD(T) calculations we will use a set of larger bases aug-cc-PVTZ and aug-cc-pVQZ

[56, 52]

The basis Apcseg-1 and Apcseg-2 is based on the basis pcseg-n - polarization-

consistent basis set indices 1 and 2 indicate the level of polarization. For Lithium (Li),

the selection of atomic set bases s requires some considerations, such as the energy balance

between the different types of functions of a given atom. The element Li has only occupied

function orbitals s and p are, therefore, the first set of polarization exponents. Li has core

orbitals, which are also high enough in energy to participate in molecular bonds in some

extents. Thus, the construction of the increased Apcseg-n base includes the dependence of

electronic densities far from the nucleus, for example, electric dipoles moments and polariz-

ability in the base set convergence that can be significantly improved by additional diffuse

functions with small exponents [57]

The article [58] extends these principles to the set bases for third row of the periodic

table and consequently for our case of interest, the Krypton.

2.4 Evolutionary Algorithm

We consider the global minimization problem difficult and it is impossible to des-

ignate an algorithm that can respond in a linearly increasing time scale with the size of the

system, so different methods appear in the literature. A solution found for this, was given

by the evolutionary algorithm (EA) or also known as genetic algorithm, which has as one of

the functionalities to discover a global minimum of small scope. The direct use of ab initio
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calculations or functional density theory has been accessible for homogeneous clusters of up

to 20 atoms whereas in heterogeneous clusters only 10 atoms have been possible [17].

Therefore, the study of larger heterogeneous clusters implies the use of analytical

potentials. We also know that a rigorous knowledge of the potential energy surface (PES)

of the clusters is required for global minimum energy optimization. Since they model the

interaction and therefore, for the use of the algorithms to which it will be presented, these

will be applied from curves or surfaces of potential energy, which can describe the interaction

behavior of atoms, to two or three bodies.

The goal of optimizing cluster geometry is to determine a structural organization

for a set of atoms or molecules that minimizes the total potential energy. PES is the function

that models the interaction between the cluster atoms and contains the relevant information

for the system. They are functions that generate high rugged landscapes of energy with a

large number of local minima and a deeper characterized in this work as the global minimum.

2.4.1 The algorithm

In 1990, the first applications of the evolutionary algorithm (EA) for optimization

of clusters appeared [59, 60]. In addition, it has now been a state-of-the-art in this area. The

performance of the EAs improves when they are coupled with the local procedure using first

order derivative to guide in the nearest local optimization. And according to studies [61, 62]

maintaining diversity is a key issue to improve the effectiveness of populations.

The evolutionary algorithm is capable of carrying a two-level optimization: it searches

the 3D optimization configuration that minimizes the potential energy of the cluster and at

the same time involves the composition of aggregates (search for a more formidable propor-

tion of atoms in each specific type). Some results showed that diversity was a key issue for the

success of the quantization algorithm [16]. For, this characterizes including two-stage local

research and efficiency depends on the maintenance of diversity throughout the optimization.

Based on this information the evolutionary algorithm to be used in this work will

be accompanied by two techniques: the local optimization L-BFGS (Near Newton method
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of local minimization)[63]. The L-BFGS is responsible for local research applied to each

generated by the algorithm, and the steady-state method that guarantees greater diversity

by keeping the population of parents and offspring competing for survival.

The figure 2.4 summarizes the logic applied by the algorithm in this work, but only

5 individuals of the population are represented in an illustrative way. Therefore the following

descriptions will follow in accordance with the one described in the image.

Figure 2.4: Algorithm structure.

As a first step in the algorithm structure (i) we choose a random initial population

of 100 individuals of cluster structures, which can show possible solutions of the problem.

Each individual composed of N atoms, N = NA + NB in which NA(NB) is the number of

A(B), atoms, in figure 2.4 we can portray A as the blue atoms (noble gases) and as B a single

atom in pink (Li+).

The coordinates of the atoms are defined by an individual coding of 3XN real values,

specifying the Cartesian coordinates of each particle, as shown in figure 2.5(the self-adaptive

step to the left of figure 2.5 will only be used and analyzed in chapter 3). Dividing in two

steps, the first would be to codify the Cartesian coordinates of the atoms belonging to the

cluster to be optimized (cluster coordinates) and a second step (self-estrategy) is the choice

of components and configurations that help in its own research strategy. The type Cx type,

corresponds to the type of crossover that the individual can adopt, Mut type is the type of

mutation that can be applied, for example, of sigma type adopted in this work, the individual
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codes for his own standard deviation, or the choice of a random mutation. And distance M

where the individual can estimate the similarity to other solutions using the set distance,

structural distance, or distance from the center of mass [18].

Figure 2.5: The algorithm coordinates and new strategy.

In step (ii) each individual of the initial population is then locally minimized with the

L-BFGS algorithm. The minimum and maximum distances between the atoms are defined by

parameters, taking into account that the potential becomes much more repulsive when two

atoms approach more than one. This condition is established in the initial population and

during the application of the genetic code. The adjustment of the global minimum results is

obtained according to the energy values calculated with the appropriate potential function.

In step (iii), starting from the initial population, we try to find out the best con-

figuration of the Cluster geometry, of the problems to be solved. There is a selection by

tournament where the two individuals of the current population are chosen to generate the

new individuals (descendants) (figure 2.6). We select each parent in two steps. First, several

current population solutions (number is given by the size parameter of the tournament) are

randomly chosen to participate in the tournament, so the best competitor of the tournament

(ie the cluster with lower potential energy) is selected as a parent of the new solutions; the

tournament is repeated until the population parents are completed. This selection tourna-

ment is considered one of the most effective selection mechanisms [64].

In the process of variation (iv), the genetic operators are applied to the selected

parents, to create a new set of solutions, the children. The variation operators to be employed

in the evolutionary genetic algorithm is the Generalized Cut method and Splice (GenC&S),

an extended variation of the original Cut and Splice (C&S) operator. We design the C&S

in general for homogeneous cluster on geometry optimization problems, in order to preserve

some semantic properties of the parents involved in a crossover operation. It selects a random

plane, passing through the center of mass of each parent cluster, and assembles the children

through the combination of complementary parts. We take precautions to ensure that each
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child contains a correct number of atoms.

GenC&S differentiates from C&S because it determines the sub clusters (subset of

atoms in an individual) to be swapped and is specifically assigned to account of heterogeneous

clusters. And it still tries to make sure that each parent’s contribution creates a set of atoms

that are nearby. The location of GenC&S is more in agreement with what is expected of the

crossing [64]. Here is a brief description of how GenC&S operates.

Figures 2.6, 2.7, 2.8 depict each step to be described in this process. First, select a

random number X ε [1, N -1]. Where N is the size of the cluster, of these, X atoms (in the

example x = 4 atoms, in red), are chosen in the first parents and N − X atoms (10-4 = 6

atoms in blue) are selected to be part of the second parent. The contribution of each parent

is determined by a composition of neighboring atoms in 3D space.

According to figure 2.7 the parents P1 and P2 are crossed, each one representing

a cluster with 10 atoms. The operation starts by selecting the random atoms of P1 (the

cut-off point CP), determining the size of the sub-cluster X ε [2, N -1] which will be inherited

from this parent. In figure 2.7 in a) X equal to 4 represents the choice of the sub cluster

of P1 that will form the descendant. And in b) shows the chosen cutting atoms in P1. As

observed by the image, there are P1 atoms that overlapped with atoms in P2, that is, they

occupy approximately the same location, in order to avoid choosing atoms in P2 that already

occupy this position then in P2 the 7 atoms listed. It is then necessary to choose 6 of these

atoms, since the intention is to form a descendant whose cluster size has 10 atoms, since 4

have already been chosen in P1. The choice of these 6 is made according to the shortest

distance from the cut atoms at P1, so the atoms numbered 1-6 are chosen. Finally, figure 2.8

shows the descendant formed by the intersection, composed of the combination of the two

sub-clusters. The procedure is repeated in the operation of the EA, the same pair of parents,

just changing the role of P1 and P2.

A specific case that will be pertinent at work because we are dealing with aggre-

gates of heretogene atoms is HGenC&S - Heterogeneous Generalized Cut&Splice therefore,

it guarantees that the descendants maintain the same proportion of atoms that are present

in their parents [64].
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Figure 2.6: The Parents.

Figure 2.7: The crossover operation betwen the parents P1 e P2.

In some cases, given the minimum distance constraint, it may be impossible to

select the sufficient number of particles in P2 to complete the descending. If this happens,

the descendant is completed with atoms placed at random locations. In any case, the random

conclusion usually occurs in less than 10% of all crossing operations and generally involves the

addition of only 1 or 2 particles, being equivalent to the application of a mutation operator.

The sigma mutation is applied to solutions resulting from crossing. From a random

atom, its location is slightly modified, as shown in figure 2.9. We obtain the new location,

disturbing each coordinate with random value shown with small standard deviation and null

Gaussian distribution.

The final step that defines the new current population and its main characteristic

is to maintain a greater diversity of the population, is the steady-state model, in which the

children compete for survival with their parents. In this model, only one or two individuals

are generated at each step of time. After the creation of the descendants, it is necessary to

decide whether they are allowed to enter into the present solution, that is, to be part of the

population, and if so, the place of the descendant will occupy. The steady-state is a crucial

step in EA’s as it has a greater impact.



Chapter 2. Methodology 40

Figure 2.8: The offsrpings.

Figure 2.9: The mutation.

The terms of steady-state used in this work are the ones proposed by Lee.et. al. 2006

[65], fitness-based, where the quality of the individual is used to decide who will be replaced.

This criterion may be associated with mechanisms that aim to maintain an appropriate level

of diversity. An example of this is to remove the worst individual and insert the youngest

child generated (with the condition that it is best).

In order to describe the proposed strategy, a programming logic is presented. Before

the descendant D is allowed to join the current Pop population, the EA verifies whether a

solution already exists, as shown below.

Figure 2.10: EA: Steady-state

The steady-state specifies that a descendant D is inserted into the population if one

of the conditions is satisfied.

(i) if D is identical to solution X ε Pop and it has better adaptation than X, so D

replaces X. (ii) if D is different from all solutions in Pop and D has the best fitness than
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the worst X solution Pop, then D replaces X.

Among the measures, dmin is the parameter of the algorithm specifying the minimum

distance of any two individuals belonging to the population. For dmin measurement, the

center-of-mass distance method is used, since it presents better acceptance in the calculation

of the distances [16], this is based on the distance of each atom in relation to the center of

mass of the cluster.

Diversity is forced, because if there are no similar solutions, D replaces the worst

individual in the population, otherwise, if the offspring are different from all the solutions of

the current population, then it will replace the worst individual. If neither of these conditions

is known, D is discarded. Starting from the initial random solution, EA intervenes between

these three steps; selection, variation, and substitution, to vary the generations, and in the

end returns the best solution found. So the best competitor in the cluster, that is, the parent

with the lowest potential energy is selected as the parent of the new solutions.



Chapter 3

Revealing energy landscapes of atomic

clusters by applying adaptive

bio-inspired algorithms

We review our work on the development of evolutionary algorithms (EAs) for re-

vealing low-energy structures of atomic and molecular clusters. The application of EAs on

the study of the microsolvation of alkali-metal ions with argon and assessing the chemical

ordering of binary clusters of transition-metal elements is discussed. Additionally, we discuss

the application of novel self-adaptive bio-inspired algorithms to model cluster-systems. Sev-

eral adaptive strategies dealing both with control parameters and algorithmic components

will be presented and some preliminary results are described and analyzed.

3.1 Introduction

The structure of a chemical compound (e.g., a drug) in biological media is intrin-

sically related to its function. In particular, proteins are formed by chains of aminoacids

that fold to acquire the specific native structure. Such an aggregate of coils (chains) may

lead to several available minima, but there is just one structure that is effective to carry

42
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out the biological function (role) and, indeed, the sequence of aminoacids forming a pro-

tein is able to fold into the corresponding native state [66]. Extra complexity in the folding

process can be observed when competition between two native states is manifest [67, 68].

This connection between protein folding and its biological function has been well-established

theoretically through the analysis of the energy landscapes [69], whose framework benefits of

employing global geometry optimization methods. Indeed, several algorithms that search for

low-energy configurations of atomic and molecular systems have been applied to the study of

the structure of molecules with biological interest [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80].

Among global optimization techniques [81, 82, 83, 62, 84, 85], Evolutionary Algo-

rithms (EAs) [12] are state-of-the-art methods that have shown to be very successful for

discovering low-energy structures of atomic and molecular cluster aggregates. In this work,

we review the development of bio-inspired algorithms carried out by our group over the past

ten years, including their application, for the first time, to discover putative global minima

of some relevant aggregates (see Refs. [2] and [64] and references therein). We also propose

a novel self-adaptive approach [86] that aims to enhance optimization effectiveness when ex-

ploring the energy landscape of atomic clusters with unknown properties. There are several

reports in the literature that advocate the development of adaptive bio-inspired approaches,

spanning from the early Evolutionary Strategies [87] efforts to the recent area of hyper-

heuristics [88]. They all share the common goal of developing an optimization framework

that autonomously adapts to the problem being addressed. This adaptation simplifies the

task of the practitioner that does not have to rely on expert knowledge to tailor an algorithm

to a specific situation and enhances the ability of the method to effectively sample the search

space of the problem under study. Self-adaptation may occur at the parameters level and/or

at the algorithmic components [88, 89]. Also, it may consider the selection of a subset of

existing components or it may foster the discovery of a novel optimization strategy. Here we

focus on a framework that selects EA algorithmic components (transformation operators and

diversity measures) and favorable settings. Preliminary results presented in Section 5 suggest

that the self-adaptive EA is able to autonomously identify the best components that enhance

the likelihood of discovering high quality solutions. Our expectation is that, in the near fu-

ture, such novel methods can ultimately be applied to the study of biochemical systems, like
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protein folding or drug design.

The application of global optimization methods may be carried out together with

the calculation of the interaction energy at either the ab initio or DFT levels of theory. This

approach has been recently reviewed by Heiles and Johnston [90]. A less computational

demanding alternative for calculating the interaction energy consists in the use of semi-

empirical potential energy functions. We follow here the latter approach. Thus, some well-

established potential models were employed: (i) sum of simple pair-potential functions for

the clusters resulting from the microsolvation of alkali-metal ions with argon, and (ii) the

usual Gupta potential for the transition-metal alloy, with the parameters taken from Clari

and Rosato [91]. Specifically, we have studied Li+(Ar)N , Na+(Ar)N and K+(Ar)N clusters as

well as bimetallic (RhCu)N aggregates. These are relevant chemical systems that can be also

appropriate to show the flexibility and robustness of the EAs. Accordingly, the main features

of our bio-inspired algorithms are described in Section 3.2, while examples of their application

to the microsolvation of alkali-metal ions and (RhCu)N clusters are reported in Section 3.3

and Section 3.4, respectively. In Section 3.5, we present a self-adaptive framework that can

autonomously identify the best components for an effective cluster geometry optimization

EA. Finally, the main conclusions are given in Section 3.6.

3.2 Evolutionary Cluster Optimization

The first work describing the application of EAs to cluster geometry optimization

was published in 1993. Hartke pioneered this area by applying what can be considered a

näıf binary encoded algorithm to the optimization of Si4 atomic clusters[59]. These first

attempts were quite inefficient and were unable to compare with existing state-of-the-art

techniques, which were mainly based in stochastic single point search methods (e.g., simulated

annealing). In 1995, a breakthrough paper from Deaven and Ho completely changed the area

of evolutionary cluster optimization and set the foundations for modern algorithms [92]. They

describe the application of an EA to carbon clusters and propose several novel components

that clearly enhanced the effectiveness of this class of methods: i) the coordinates of the
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atoms composing the aggregate are codified as real values, thus departing from the binary

encoding (this same modification was simultaneously proposed by Zeiri [93]); ii) genetic

operators are applied directly in the 3D space, thus preserving some semantic properties of

the solutions. The proposed crossover is considered the first cut and splice like operator;

iii) conjugate gradient minimization is applied to all solutions generated by the EA, moving

them to the nearest local optimum; iv) a simple mechanism prevents identical individuals

from belonging to population. An energy-based similarity is considered. Over the last twenty

years, the proposals of Deaven and Ho have been improved with the aim of further enhancing

the effectiveness of EAs for cluster geometry optimization [94, 95, 16, 62]. Two key issues

have been considered by researchers: the development of genetic operators that are aware

of the properties of the solutions when transforming them [92, 96, 97, 98] and the definition

of enhanced distance measures that better estimate the existence of duplicates/identical

solutions in the population [99, 62, 100, 16, 101].

Our group has been developing cutting edge EAs for cluster optimization for over

a decade [102, 103, 16, 104, 105]. The most distinguish feature of our approaches is the

unbiased nature of the search performed by the algorithm. Although this might compromise

absolute effectiveness, it allows for an increased robustness, thus fostering its application to

novel chemical systems for which specific knowledge about the general organization of the

global minimum is not available. Considering existing global optimization approaches, our

algorithms comprise two key enhancements: improved set of genetic operators [16, 103] and

a suite of distance measures that effectively maintain diversity throughout an optimization

run [16]. The representation of solutions builds upon the proposals of Zeiri and Deaven and

Ho. In accordance, to represent an atomic aggregate with N particles, the chromosome is

composed by 3 X N real values codifying the Cartesian coordinates of each particle. In turn,

when representing molecular clusters, another set of 3 real values is added to each particle in

order to encode the Euler angles that describe the orientation of the corresponding molecule

in the 3D space [2]. All genes have a predetermined minimum and maximum bound: for

the coordinates they define a 3D box in which the particles must be placed, whereas the

orientation components range between 0 and 2π. The EA explores the search space defined

by these settings, trying to identify the cluster with the global minimum energy.
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To enhance search efficiency, all solutions are locally optimized before evaluation

and therefore the solution pool is composed just by local optima. L-BFGS is the quasi-

Newton standard local search procedure adopted to hybridize evolutionary cluster geometry

optimization, as it cleverly combines modest memory requirements with fast convergence

[63]. Several works describe modified local search procedures to speed up convergence and

to increase the likelihood of discovering promising solutions. The so-called two-stage local

search considers a modified biased potential that changes the potential energy surface and

enhances the likelihood of discovering nonicosahedral global minima [83, 96]. This modified

potential comprises a set of parameters that favor the appearance of specific shapes (e.g.,

ellipsoidal vs. spherical). As these settings must be specified prior to the optimization, this

local search strategy cannot be used in situations where the shape of the global optimum is

not known. In the algorithm applied in this work, only the standard L-BFGS is considered.

Selection of parents is performed with the tournament operator, a method that allows for

an effective adjustment of the selective pressure [12]. In a previous work we proposed a

structural elite operator that was able to keep the best solutions in the population, together

with the promotion of clusters with diverse structural shapes [106]. In our most recent

publications, we have been proposing a more efficient steady-state approach: it relies on a

fitness-based replacement strategy, in which the new solutions generated by the EA replace

the worst individuals from the population, providing that they have better quality (i.e.,

lower potential) [16]. To prevent premature convergence, a diversity mechanism forbids the

coexistence of similar solutions in the pool. Similarity between individuals can be accessed

either by fitness or by structural properties. Results obtained with several chemical systems

demonstrate the advantage of relying in structural distance measures [16].

Cut and Splice crossover operators are clearly the best option to combine sub-clusters

of parents when creating novel solutions [92, 95, 97, 103, 98]. Their distinctive feature is the

operation in the 3D space, aiming at preserving some semantic properties of the parents.

Different flavors exist in the literature, depending on the constraints considered when ap-

plying the operator (e.g., selection based on a cutting plane vs. selection based on minimal

Euclidean distance) and on the type of cluster being optimized (atomic/molecular; homo-

geneous/heterogeneous). As for mutation, two classes of operators are usually considered:
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random mutation takes a particle and chooses a new arbitrary location for it inside the 3D

box defining the search space; sigma mutation slightly perturbs the coordinates of a particle

with a value sampled from a normal distribution [16].

3.3 Microsolvation of alkali-metal ions

The theoretical investigation on the microsolvation of alkali-metal ions by water and

other molecules has been recently reviewed by us [Phil. Trans. R. Soc.]. The substitution

of the solvent molecules by atoms reduces the complexity of the theoretical problem, both

in modeling the potential energy interaction and during the search of the global minimum

structure (which, now, does not depend on orientational degrees of freedom). Because of this,

we have chosen the microsolvation study of alkali-metal ions with argon atoms to illustrate

the application of our global optimization methodology.

The study of the microsolvation of alkali-metal ions with argon constitutes a good

starting point to understanding the solvation phenomena involving these ionic species in

the more complex biological environment. To establish the interaction potential model, we

have employed two-body functions. While the Ar-Ar pair-potential is represented by the

function Rydberg-London function of Cahill and Persegian [107], the interaction between the

alkali-cation and argon was modeled as:

V (R) = aRc exp(−bR)− χpol(dpol, R)
C4

R4
− χdisp(ddisp, R)

C6

R6
(3.1)

where a, b, c, C4, C6 are fitting parameters, while the damping functions for both polarization

and dispersion components have the general form:

χ(d,R) =

 1 R > d;

exp [−(d/R− 1)2] R ≤ d.
(3.2)

We should note that d refers to dpol (ddisp) in the calculation of polarization (disper-

sion) component. The parameters have been obtained by fitting the function to ab initio data



Chapter 3. Revealing energy landscapes of atomic clusters by applying adaptive
bio-inspired algorithms 48

Table 3.1: Parameters of the Na+-Ar and K+-Ar potentials that were obtained by fitting
Eqs. (3.1) and (3.2) to CCSD(T) ab initio energies. See the text.

Potential parameters Systems
Na+-Ar K+-Ar

a/eV 5040.47 4523.69

b/Å−1 4.25 3.478
c 1.815 0.25

C4/eV Å−4 8.34 11.078

C6/eV Å−6 181.207 79.51

dpol/Å 7.95 3.415

ddisp/Å 2.60 3.669

calculated at the CCSD(T) framework by using GAMESS package [108] and a basis set with

quadruple-zeta quality for Li+-Ar and Na+-Ar (cc-pVQZ for lithium [53] and aug-cc-pVQZ

for argon [109]) and with triple-zeta quality for K+-Ar (ATZP basis set [110, 111]). The ab

initio electronic energy were corrected for the basis-set superposition error (BSSE) with the

counterpoise method [112], and, during the calculations, 7 and 10 orbitals were frozen for

Na+-Ar and K+-Ar systems, respectively. The values of the parameters are given in Table

1, according to the fit performed using 25 and 26 ab initio points distributed in the intervals

of 2.3 up to 10.0 Å and 2.5 up to 10.0 Å for Na+-Ar and K+-Ar, respectively, while the

corresponding ones for Li+-Ar have been published in Ref. [113]. All ab initio points are

available from the authors upon request.

This pair-potential approach appears to be reasonable, since we are mainly con-

cerned with the structural features of the microsolvation clusters and the three-body inter-

actions are not expected to affect too much the geometries arising from models based on

two-body functions. Actually, we have recently investigated the microsolvation of Li+ by ar-

gon [113] and we showed that the inclusion of three-body interactions to model the Li+(Ar)N

clusters is relevant for describing energetic features, but it is less important to establish the

global minimum geometry. In this reference [113], we have showed that, in general, the

global minima of the potential with three-body interactions have always higher energy and,

usually, lower symmetry than the corresponding ones for the PES that includes only two-

body terms. Indeed, the Li+(Ar)N clusters obtained from a potential based on pair-wise

interactions failed the main energetic features up to N = 10, and the Li+(Ar)2, Li+(Ar)3 and
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Li+(Ar)10 structures become wrong when compared with the ones from the MP2 optimiza-

tion and the single-point CCSD(T) calculation for the MP2 geometries. For the other hand,

the structures obtained using the potential energy surface (PES) including three-body terms

had a good agreement with the corresponding ones optimized at the ab initio level up to

N=8. For larger clusters, additionally, the comparison between potentials with and without

three-body forces showed significant energetic and some structural differences for various of

the cluster sizes. However, the results obtained with both surfaces were able to explain the

high stability peaks for structures with ”magic numbers“ N= 4, 6, 14, 16 and 34 that arises

from the experimental mass spectral intensities [114].

Figure 3.1: Potential energy curves for Ar-Li+ (magenta), Ar-Na+ (green), Ar-K+ (blue) and
Ar-Ar (orange) interactions. The Ar-Ar curve is from Ref. [Cahil], while the ion-Ar ones
correspond to fits of Eq. (3.1) to ab initio points (also represented for Ar-Na+ and Ar-K+).

In the remaining of this section, we report new results for Na+(Ar)N and K+(Ar)N

(with N=2-40) and compare them with previous studies on similar systems. In Figure 3.2,

we show the putative global minimum structures for Na+(Ar)N . This system has been

previously studied by Rhouma et al. [9] by employing two potential models that include 3-

body interactions. In spite of some discrepancies for small-size clusters, where 3-body effects

are expected to be more apparent, the present results give similar global minimum structures
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up to N=10; exceptions arise only for Na+(Ar)2 and Na+(Ar)3. Like for Li+(Ar)N , the

clusters grow up by surrounding the Na+ by an increasing number of argon atoms. A similar

pattern is observed in Figure 3.3 for K+(Ar)N . Nonetheless, several structural differences

arise for the solvation of Li+, Na+ and K+ with argon. Whereas the maximum coordination

number is 6 for the Li+(Ar)N clusters [113], it increases to 8 (12) for the solvation of Na+

(K+), as one can observe from Figure 3.2 (Figure 3.3). This may be attributed to the

increasing size of the ions, which is apparent from the diatomic curves displayed in Figure

3.1: the equilibrium geometries are 2.37 Å, 2.85 Å and 3.33 Å for Li+-Ar, Na+-Ar and

K+-Ar, respectively. Although such a behavior with the increasing size of alkali-metal ion

may be expected for other solvents, exceptions have been observed when there is a certain

degree of competition between ion-solvent and solvent-solvent interactions (see, e.g., Refs.

[115, 116, 117, 118] for the microhydration case). We show in Figure 3.4 that, for most cases,

the ion is displaced off the center of the cluster. In fact, during the completion of the first

solvation shell the ion occupies the center of the structure only for the clusters Li+(Ar)4,

Li+(Ar)6, Na+(Ar)6, Na+(Ar)8, K+(Ar)9 and K+(Ar)12. It is worth noting that such clusters

correspond to maxima of the second energy difference, i.e.,

∆2E = −2EN + EN−1 + EN+1 (3.3)

where EN , EN−1 and EN+1 are the energies of clusters with N, N-1 and N+1 argon atoms,

respectively; the ∆2E curves are represented in Figure 3.5 and the maxima are usually

designated as ”magic numbers“. For the three alkali-ions, the strongest ”magic number“ is

associated with the closure of the corresponding first solvation shell. Whereas the Li+(Ar)6

cluster has Oh symmetry, the K+(Ar)12 structure is an icosahedron. In the case of Na+,

though the first solvation shell closes at N=8 (in agreement with the work of Rhouma et

al. [9], which uses a potential model with explicit three-body terms), another strong peak

occurs for the Na+(Ar)10 cluster; we note from Figure 3.2 that both Na+(Ar)8 and Na+(Ar)10

structures belong to the D4d point group of symmetry, but two of the argon atoms of the

latter are already in the second solvation. Concerning larger clusters, the K+(Ar)N global

minimum structures tend to be more symmetric than the Na+(Ar)N ones. Like for ArN
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clusters, the K+(Ar)N global minima are icosahedric-type structures, which is against the

global optimization result achieved for a pair-potential model by Hernández-Rojas and Wales

[119], and that predicts icosahedral packing only beyond N=49. Indeed, the equilibrium

distance and the well-depth of the K+-Ar bond are both more similar to the corresponding

values in the Ar-Ar interaction than the Li+-Ar and Na+-Ar ones. It is also clear from Figure

3.4 that, in the case of large clusters, the Li+ ion tends to occupy a more central position

than Na+ or K+, which may be explained by the fact that the Li+-Ar bond is strongest one

(see Figure 3.1). In turn, only very small peaks of the ∆2E curves are observed for the larger

clusters in Figure 3.5, which emphasizes the small contribution of each Ar-Ar interaction

in the second solvation shell for the total energy of the aggregate. Nonetheless, it is worth

noting that we can reproduce the mass-spectra ”magic numbers” observed in time-of-flight

experiments [120] for K+(Ar)12, K+(Ar)18 and K+(Ar)22, while a previous global optimization

study by Hernández-Rojas and Wales [119] estimated a completely different series of clusters

with enhanced stability.
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Figure 3.2: Putative global minimum structures for the Na+(Ar)N clusters. The Cartesian
coordinates are available from https://apps.uc.pt/mypage/faculty/qtmarque/en/clusters.
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Figure 3.3: Putative global minimum structures for the K+(Ar)N clusters. The Cartesian
coordinates are available from https://apps.uc.pt/mypage/faculty/qtmarque/en/clusters.
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Figure 3.4: Distance separating the ion from the center of mass of the cluster: solid line
(orange), Li+(Ar)N ; dashed line (red), Na+(Ar)N ; dotted line (magenta), K+(Ar)N .

Figure 3.5: Second energy difference of the global minimum structures: solid line (orange),
Li+(Ar)N ; dashed line (red), Na+(Ar)N ; dotted line (magenta), K+(Ar)N .
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3.4 Binary transition-metal clusters

Metal alloys constitute a stringent test for global optimization algorithms, since

there are several minima resulting from swapping different types of atoms within the same

structure (i.e., the so-called homotops [121]). Our EA has been applied to study several

two-component systems, including binary Lennard-Jones clusters [101], mixtures of rare-gas

atoms [104], Zn-Cd alloy [122] and colloidal aggregates [123, 105]. In this section, we analyze

the global minimum structures of binary clusters of the Cu-Rh alloy that have been searched

with our EA. Figure 3.6 shows the putative global minimum structures of the (RhCu)N

(N=2-21) clusters. In spite of having atoms of two different species, there are some symmetric

structures especially for small-size clusters, and even the (RhCu)13 global minimum has C3v

symmetry. Due to the difference in the cohesion energies of rhodium and copper (they are

[124] 5.75 eV/atom and 3.49 eV/atom, respectively), the tendency of the growing clusters

is to keep the Rh atoms next to each other, while increasing the Rh-Cu nearest-neighbor

interactions as much as possible. Thus, it is apparent for larger clusters that the Cu atoms

segregate on the surface of the structure, whereas rhodium occupy preferentially more central

positions. Since the number of atoms of each type is the same and the radius of Rh is larger

than the Cu one, we cannot observe a perfect core-shell structure. Nonetheless, we may say

that the global minimum structures display a clear core-shell type of segregation with the

copper atoms on the surface. In contrast, we recall here our recent work on (ZnCd)N clusters

[122], where a perfect icosahedral core-shell structure is observed for most sizes.

It is interesting to observe in Figure 3.7 that most of (RhCu)N (N=2-21) clusters

are not stable in comparison with the neighbor-size ones. Indeed, the strongest ”magic

number” arises for N=19, though two other small peaks occur for N=13 and N=17. In

particular, the corresponding N=19 homogeneous cluster resembles a very organized structure

that essentially has Oh symmetry, i.e., it displays a truncated octahedron motif (cf. Figure

3.6).
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Figure 3.6: Putative global minimum structures for the (RhCu)N clusters: red (green) spheres
represent Rh (Cu) atoms. Also shown are the corresponding point groups of symmetry.
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Figure 3.7: Second energy difference of the global minimum structures for the (RhCu)N
clusters.

3.5 New self-strategies for global optimization: appli-

cation to Morse clusters

Current research in the evolutionary cluster area mainly focuses on enhancing spe-

cific components aiming at a better efficiency/effectiveness tradeoff. Remarkable examples

are the definition of simple recipes for maintaining diversity or the proposal of novel genetic

operators [125].

Such efforts correspond to an exploitation of existing frameworks and we believe

that these proposals are not enough to foster the appearance of innovative evolutionary

approaches. On the contrary, we consider that truly original ideas should be tested, in order

to allow for a relevant enhancement of the behavior of EAs for cluster geometry optimization.

Das and Wales recently proposed one interesting idea [126]. They presented a machine

learning algorithm to estimate the potential energy level of a given configuration. Results are

reported for a simple triatomic molecule and the system is able to make a reliable prediction
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about the final local minimum taking a sequence on configurations as input. Despite being

tested only in simple systems, the accuracy of the classification algorithm suggests that it

might be used to advise a hybrid EA to only perform the costly local minimization step in

promising departing configurations.

In this work, we propose a novel self-adaptive EA for cluster geometry optimization.

The proposal is directly related to the area of Multimeme Memetic Algorithms [127], which

comprises self-adaptive memetic methods that simultaneously co-evolve solutions and settings

encoded in each individual. It also draws inspiration from hyper-heuristics [88, 128, 89], a field

that deals with the development of computational frameworks whose goal is to automatize

the design of methods to solve hard global optimization problems. In concrete, our approach

allows individuals to autonomously choose several settings and algorithmic components, thus

defining their own search strategy.

A brief perusal of the cluster evolutionary optimization literature confirms that many

different components can be selected to create a hybrid EA for this task, e.g., in what concerns

the distance measure used to estimate similarity or the transformation operators that are

applied to selected parents. Also, a considerable number of settings need to be defined.

These are important decisions, as they will clearly impact the behavior of the algorithm. In

addition, particularly when dealing with chemical systems with unknown properties, it might

be difficult to correctly identify which components are better for that specific task. Finally,

an optimization run comprises several stages and different components/settings might be

better adapted to specific periods.

The EA proposed in this section has a general behavior similar to the one pre-

sented in Section 3.2. However, each solution from the population pool will comprise two

components: a regular representation of the coordinates of the particles that compose the

aggregate and individual settings that specify how this solution will be processed by the

algorithm. We consider the following individual information pertaining the definition of the

self-optimization strategy: Crossover type: individuals can adopt either Generalized C&S or

standard one-point crossover. Mutation type: individuals can adopt either Sigma mutation

or Random mutation. If sigma mutation is active, then the individual also encodes its own
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standard deviation, which can take one of the following values: {0.01, 0.05, 0.1, 0.2}.

Distance measure: individuals can estimate similarity to other solutions using Fit-

ness distance, Structural distance or Center of mass distance [16];

Figure 3.8 highlights an example of an individual chromosome. The first part of

the solution encodes the Cartesian coordinates of the atoms that belong to the cluster being

optimized. The second part contains the selection of components and settings that help to

define its own search strategy.

Figure 3.8: General organization of an individual chromosome: each individual comprises
the coordinates of the atoms that belong to the cluster and its self-strategy.

The individual settings encoded in a solution are inherited by its descendants. When

generating a descendant, encoded self-strategies are mutated at a predetermined rate (0.05

in this study) to prevent stagnation of the optimization behavior. All encoded settings are

specific of a single solution, with the exception of the crossover type. When two parents

engaged in a crossover operation have different crossover types, one of them is randomly

selected.

The self-strategy encoded in solutions is straightforward and several other compo-

nents could be considered. Also, evolution and cooperation/competition between existing

strategies might be performed using other, enhanced, rules. Here, our goal is to propose a

simple approach that can act as a proof of concept for the advantage of relying on self-adapted

EAs for cluster geometry optimization. In accordance we applied the self-adaptive EA to the

14 hard Morse instances identified in [16], corresponding to the following cluster sizes: 41,

43, 46, 47, 53, 59, 60, 61, 62, 68, 70, 73, 74, 75. We do not seek for an enhanced effectiveness

in this specific situation, as the EA success rate reported in the above-mentioned reference

results from a carefully tuned algorithm to the potential function being addressed. Following

our research hypothesis, our main goal is to verify whether the self-adaptive framework is

able to successfully identify the components/settings that foster the discovery of the global
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minima for the instances considered in this study. The EA global settings are the same as

reported in the above mentioned study: Number of runs: 30; Population size: 100; Tourna-

ment Size: 5; Crossover rate: 0.7; Mutation rate: 0.05; Evaluations: 1x107; Maximum Local

Search Length: 1000.

As a rule, we verified that the self-adaptive EA was able to find the global minimum

in several runs, for all the instances considered in the study. The success rate ranged be-

tween 3% and 33% and, for each instance, tended to be slightly below that reported for the

fined tuned EA [16]. As mentioned before, this was an expected result, as the optimization

algorithm is solving two problems simultaneously: it seeks for the best optimization strategy,

at the same time it is trying to find optimal configurations for the clusters being optimized.

Given the limited computational budget, we could anticipate that the final absolute opti-

mization performance would be inferior when compared to carefully tuned algorithms that

only need to seek for cluster with minimum potential. The most important outcome here is

to verify if self-adaptation is identifying the most promising components and results confirm

that this is indeed happening. The 3 panels from Figure 3.9 show the prevalence of C&S

crossover and Sigma mutation throughout the optimization run: panel a) refers to the Morse

cluster with 43 atoms, panel b) for the instance with 68 atoms and panel c) for the instance

with 74 atoms. The same trend is visible for other instances. Since the beginning of the

run, the percentage of individuals in the solution pool encoding C&S crossover and sigma

mutation steadily increases and reaches over 90% for this mutation operator and around 80%

for the crossover. The self-adaptive EA is thus able to identify and promote the applica-

tion of the suite of operators that the literature in this area recognizes as the most effective

ones. A detailed inspection of the strategy configurations encoded in global optimal solu-

tions discovered by the hybrid EA reveals that not a single one was obtained with random

mutation. This outcome confirms that sigma mutation is mandatory to perform the final

adjustments that lead to the discovery of clusters with minimum potential energy. As for

crossover, around 75% of global optimal solutions encode the application of C&S crossover,

corroborating that semantic aware operators are better equipped to explore the search space.

It is interesting to notice that, when taking the largest instances considered in this study

(N ≥70), the advantage of C&S vanishes. For these instances, the percentage of global min-
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ima encoding this operator drops to about 50%, the same percentage of standard one-point

crossover. This suggests that C&S like crossovers might have some difficulties when dealing

with clusters above a given number of particles. This is an effect that was not previously

reported in the literature and that might be another factor that helps to justify the decrease

in the EA success rate, when clusters grow in size. We will return to this topic in a future

work.

To complete the analysis of the self-adaptive EA, in Figure 3.10 we present the

evolution of the 3 distance measures encoded in the solutions belonging to the solution pool.

The 3 panels report results obtained with the 3 instances from the previous figure. The

outcomes are similar for instances of different size and confirm that fitness based distances

are not suitable for accessing the similarity between atomic clusters. The two structural

based distances are predominant in the solution pool and, among the two, the center of

mass distance, obtains the higher percentage. This is in line with previous studies that

suggest this distance measure as the best option to estimate cluster similarity [62, 16] and

supports the hypothesis that a straightforward self-adaptive strategy is able to correctly

identify components that enhance the optimization ability of an EA for cluster optimization.
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Figure 3.9: Evolution of the percentage of individuals encoding Gen C&S crossover and
sigma mutation in the optimization of three Morse instances: a) 43 atoms; b) 68 atoms; c)
74 atoms.
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Figure 3.10: Evolution of the percentage of individuals encoding each of the distance measures
in the optimization of three Morse instances: a) 43 atoms; b) 68 atoms; c) 74 atoms.
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3.6 Conclusions

We reviewed the work of our group on the development of EAs for searching low-

energy structures of atomic clusters. To illustrate the potentialities of this methodology, we

have applied our EAs to the study of alkali-ion microsolvation with argon and for discovering

global minimum structures of Rh-Cu binary clusters. The results for Li+(Ar)N , Na+(Ar)N

and K+(Ar)N show that strong “magic numbers” are associated with the closure of the first

solvation shell. Among these three systems, the global minimum structures for K+(Ar)N

clusters are, in general, the most symmetric ones. It is also worth noting that simple two-

body potential employed for K+(Ar)N clusters allowed to reproduce the experimental “magic

numbers” observed [Luder] for K+(Ar)12, K+(Ar)18 and K+(Ar)22. Concerning the bimetallic

clusters, we have shown that the global minimum structures present segregation of Cu atoms

on the surface of the aggregates, which is compatible with the experimental cohesion energies

of rhodium and copper. Finally, we should emphasize that EAs are state-of-the-art methods

for geometry optimization and, in the past twenty years, they have been successfully applied

to chemical systems with distinct properties. In addition, the preliminary results presented in

this work suggest that self-adaptation is a promising avenue for future research. We proposed

a novel self-adaptive framework that is able to simultaneously discover good quality solutions

for a given cluster optimization problem, while it crafts a method specifically adapted to the

search space being explored. We hypothesize that this framework is particularly advantageous

in situations where knowledge about the structural properties of the system being optimized

is not available and our future research will address this important endeavor.



Chapter 4

Exploring the first-shell and

second-shell structures arising in the

microsolvation of Li+ by rare gases

An evolutionary algorithm (EA) has been employed to search for the low-energy

structures of Li+Arn and Li+Krn clusters up to n = 14. Two analytical model-functions

have been used to describe the interaction potential: one is based only on a sum of all pair-

potentials, while the other includes also three-body interactions. Specifically, a new potential

energy surface (PES) for Li+Krn that includes three-body interactions has been modeled by

calculating ab initio aug-cc-pVQZ/CCSD(T) energies for the Li+Kr and Li+Kr2 fragments;

for Li+Arn, we have used our recently developed PES (Phys Chem Chem Phys 2017; 19:

25707-25716). Except for a limited number of cluster sizes from the second solvation shell,

the global minimum structures are similar for both Li+Arn and Li+Krn. Modifications in the

octahedral structure of the first solvation shell lead to a high-energy penalty, whereas the

second solvation shell shows a panoply of minima with similar energies that are likely to be

inter-converted, since the relevant PES is apparently flat. The reliability of both analytical

potential models to describe low-energy structures was further investigated by performing

post-optimization at the MP2 level of theory. For n = 2 and n = 3, we confirmed that it

is essential to include three-body terms in the PES to reproduce the low-energy structures.

65
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In addition, the MP2 calculations indicate that the energy re-order of the global-minimum

structure observed for Li+Kr8 is related to the Kr3 Axilrod-Teller-Muto term included in the

PES.

4.1 Introduction

Solvation is a complex phenomena with great relevance for the broad area of chemical

physics. It is intimately related with the interactions that can be established among solute

and solvent molecules, while the contribution from entropic effects can only be correctly

described when incorporating all degrees of freedom of the system. Two main theoretical

approaches are followed in the study of solvation: (i) continuum solvation models that do

not treat solvent molecules as individual entities; (ii) explicit microsolvation methodology,

where the solvent molecules are successively added to the system. Although the continuum

models are able to incorporate the polarization of the solvent, they cannot explicitly describe

interactions with a strong directional character and, in this way, environments involving

various solvents, ionic solutes and biological systems are difficult to be accounted for. To

somehow reduce these drawbacks, continuum-solvent methods [129] have been improved to

approximately incorporate the structure of the solvent [130], as well as the formation of

the cavity for solute and the dispersion interaction by including additional empirical-based

terms [131, 132]. In turn, the microsolvation approach leads to a higher computational cost,

because it has to calculate the contribution to solvation of all possible isomers of the relevant

clusters. Nonetheless, microsolvation allows for a detailed understanding of the phenomena

at the molecular level, since solute and solvent species are explicitly represented and, thus,

all interactions can be incorporated. Particularly important in the study of microsolvation is

the exploration of the low-energy structures of the clusters that are representative of the first

solvation shells. This may be accomplished by employing state-of-the-art global optimization

algorithms, like the ones developed in our group and other groups over the last decade [133],

complemented with electronic structure calculations.

For this, one may carry out the global optimization search directly at the ab initio



Chapter 4. Exploring the first-shell and second-shell structures arising in the
microsolvation of Li+ by rare gases 67

or DFT level of theory [90, 134], but this has the disadvantage of being very time-consuming.

As an alternative, it is usual to construct an analytical potential energy surface, which is

then used with the global optimization method to generate a relevant set of low-energy

structures [135]; another tested approach for generating a promising pool of structures has

also been achieved [136, 137] through optimization with standard optimization algorithms

coupled to semi-empirical Hamiltonians [138, 139] or the Hartree-Fock method. These are

subsequently re-optimized at a higher level of theory by employing ab initio or DFT methods

(see, e.g., Refs. [140, 141]).

The theoretical and experimental study of the microsolvatation of ions is an impor-

tant issue for diverse areas of knowledge [142, 143, 144, 145]. In particular, the solvation of

alkali-metal ions with rare-gas atoms is theoretically appealing since it leads to an electronic

closed-shell system that can be treated by a single-determinant wave function. Moreover, the

interaction between the alkali-metal ion and the rare-gas is dominated by electrostatic forces.

Hence, it mainly depends on the polarizability of the rare-gas, and on both the charge and

radius of the ion. Accordingly, cluster systems involving an alkali-metal ion surrounded by

rare-gas atoms have been already addressed in literature [120, 9, 114, 113, 146]. Nonetheless,

there is still room to improve the quality of the information about the energy and structural

motifs of the clusters that grow during such microsolvation phenomena.

The main motivation for the present work is the identification of similarities/ dis-

crepancies in low-energy minimum structures arising from two types of potential functions

used to model the microsolvation clusters of alkali-metal ions with rare-gas atoms. One is

based only on a sum of all pair-potentials, while the other includes also three-body interac-

tions between the constituents of the cluster. As test cases we study the solvation of Li+ in

argon and krypton aggregates, and have employed an evolutionary algorithm (EA) to search

for the low-energy structures of these clusters up to 14 rare-gas atoms. This is important to

visualize the low-energy landscape of the clusters arising in the formation of the first solvation

shell and initial steps of the second one. The interaction between the Li+ and krypton atoms

is described by a new potential energy surface (PES) modeled in the present paper. In what

concerns the solvation with argon, we use the global minima data obtained in our previous
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study [113, 146], but we had to search for other low-energy structures of Li+Arn clusters.

Specifically, we have performed a detailed comparison between the low-energy structures of

both aggregates obtained by using the two different potential energy functions. For similar

structures obtained from both potential energy surfaces, we also focus on the energy order

of those minima and, specifically, a post-optimization is carried out by employing electronic

structure calculations with the MP2. In the case of global minima, we have also verified

whether the Li+Arn structures are distinct from the Li+Krn ones.

The paper is organized as follows. In Section 4.2, we describe the methodology

employed in the present investigation. The results are presented and discussed in Section 4.3.

The main conclusions are gathered in Section 4.4.

4.2 Methodology

4.2.1 Analytical potential energy surfaces

We have employed two types of potential energy surface (PESs) to model the inter-

actions for both Li+Arn and Li+Krn clusters: one includes up to three-body components in

a many-body expansion approach (hereafter designated as PES I), while the other is written

as a sum of all pair-potentials (hereafter designated as PES II). Thus, PES I is described by

the expression:

V (R) =
∑
j

VLi+X(Rij) +
∑
j

∑
k>j

VX2(Rjk) +∑
j

∑
k

VLi+X2
(Rij, Rik, Rjk)

+
∑
j

∑
k

∑
m

VX3(Rjk, Rkm, Rjm) (4.1)

where the i-index refers to the Li+ ion and indices j, k, and m label three distinct rare-gas

atoms of a cluster system; X refers to either Ar or Kr. In Eq. (4.1), the VLi+X2
terms describe

the three-body contributions due to the interaction between the dipoles on rare-gas atoms
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induced by the lithium ion, while VX3 is given by the well-known Axilrod-Teller-Muto (ATM)

long-range potential. Conversely, the three-body interactions are missing in PES II, since it

incorporates only the two-body terms of Eq. (4.1). The analytical functions of both two- and

three-body terms have been described in our previous work [113] and are, now, detailed in

the Supplementary Information.

The Li+Arn potential was modeled in our recent work [113], while the Li+Krn one

is built in the present study by following the steps described in that paper. The Li+X

and Li+X2 terms of the PESs were fitted to ab initio points calculated with the GAMESS

program [147] by employing the coupled cluster method that includes single and double

excitations plus triple excitations obtained through perturbation theory [i.e., CCSD(T)]. As

for the three-body term of both Ar3 and Kr3, we have employed the Axilrod-Teller-Muto

(ATM) potential [148, 149, 150] whose C9 parameters were taken from the literature [151].

In addition, the two-body potentials for Ar2 and Kr2 were described by the simple Rydberg-

London functions reported by Cahill and Parsegian [107].

Specifically for the determination of Li+Krn potential, the CCSD(T) method with

the augmented correlation consistent polarization valence quadruple zeta (aug-cc-pVQZ) ba-

sis set for the lithium ion [152] and for the krypton atoms [56] has been employed to calculate

ab initio energies for 29 (209) geometries of the Li+Kr (Li+Kr2) system; 14 electrons for each

Kr were frozen. Then, these energies were corrected for the basis-set superposition error

(BSSE) by applying the counterpoise method [112]. Finally, such corrected energies were

used to fit the corresponding analytical functions. For the most difficult case of fitting the

Li+Kr2 three-body terms, we have employed the GAFit program [21], which is based on

a genetic algorithm [153, 154] and has been designed to significantly facilitate the task of

developing potential energy surfaces. All details and the values of the parameters are given

in the Supplementary Information.

4.2.2 Geometry optimization procedure

We have employed an EA to search for the low-energy structures of PES I and

PES II for the title systems. For each cluster size, the EA starts with an initial pool of
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random solutions and iteratively applies state-of-the-art genetic operators to discover the

global minimum structures. Each solution encodes the real-valued Cartesian coordinates of

the particles composing the aggregate (either Li+ and n Ar atoms or Li+ and n Kr atoms).

The coordinate values range between 0 and 8.5× (n+ 1)1/3, where n+ 1 represents the size

of the cluster. A minimum distance constraint enforces that the distance between every pair

of particles is never below 3.5 a0 (2.4 a0) for Li+Arn (Li+Krn) clusters.

The iterative processing of the solutions comprises a set of sequential operations.

First, tournament selection probabilistically chooses the best solutions of the current pool

to be the parents of a new set of clusters. Then, heterogeneous generalized cut and splice

crossover [92, 155], a phenotypic genetic operator specifically designed to work with mixed

clusters [156], is applied to pairs of parents and obtains two new solutions. The resulting

offspring are slightly modified with sigma mutation, an operator that randomly perturbs the

3D location of atoms [16]. The new solutions are locally optimized with the limited memory

Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [157, 63], a quasi-Newton method

that efficiently drives the solution to the local optimum at the bottom of the current basin of

attraction on the energy landscape. After local relaxation, the final solution is evaluated with

the appropriate function (PES I and PES II). The EA includes a swapping-type procedure

in the evaluation step. This operation selects two atoms from different types (i.e., Li+ and

a rare-gas atom), exchanges their positions ands accepts the change if it leads to a decrease

in the energy of the resulting cluster. The EA applied in this study adopts an enhanced

steady-state replacement strategy. After generating a new set of descendants, they replace

the current solutions providing that they have lower potential energy and that no two similar

cluster coexist in the pool. Structural similarity between solutions is estimated with the

center of mass distance, a measure originally proposed in Ref. [62] and widely used in cluster

geometry optimization studies [16]. A steady-state EA model that maintains structural

diversity is better equipped to postpone premature convergence and can also maintain a

diverse set of good quality local minima in the pool of solutions. The EA iterative cycle is

repeated until a predefined number of evaluations of the interaction potential is achieved. The

settings of the EA are the following: Number of runs: 30; Population size: 100; Evaluations:

500000 (1000000) for Li+Arn (Li+Krn); Tourney size: 5; Crossover rate: 0.7; Mutation rate:
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0.05; Standard deviation for sigma mutation: 0.1.

Since the EA evolves a pool of different solutions, at any point of the optimization

we can choose a given number of distinct low energy structures to be printed out. On

the other side, additional structures have been searched by carrying out local optimizations

departing from geometries obtained with different PESs (see also Sections 4.3.2 and 4.3.3).

In order to distinguish between minima and saddle-points, we have performed a normal-mode

analysis by diagonalizing the mass-weighted Hessian matrix for each structure. In turn, the

comparison between two minimum geometries has been carried out by employing the SAICS

program [101], which calculates the root-mean-square distance (RMSD) for the best overlap

between the structures and, furthermore, is able to identify enantiomers.

4.3 Results and Discussion

4.3.1 Li+Kr2 PES: main features and comparison with Li+Ar2

The first step in the establishment of PES I for a given cluster comprises the con-

struction of the PES for Li+Kr2 by fitting an adequate analytic function to ab initio data

that has been corrected for the BSSE with the counterpoise method; a similar procedure

has been adopted for Li+Ar2 in our previous study [113]. We compare in Figure 4.1(a) the

Li+Kr curve obtained in this work with the Li+Ar one from Ref. [113]. We note that the

Li+-Kr interaction leads to a deeper potential well, in comparison with the corresponding

one for Li+-Ar; the equilibrium geometry is 4.764 a0 (4.484 a0) for Li+Kr (Li+Ar), where

the potential has the minimum value of −13.1 mEh (−10.6 mEh). In turn, the vibrational

frequency of Li+Kr is slightly red-shifted in relation to the value of 267.5 cm−1 obtained by

us [113] for the lighter Li+Ar molecule. As shown in Table 4.1 for Li+Kr and in Ref. [113]

for Li+Ar, our data is in good agreement with the values given in literature by other au-

thors [158, 159, 160, 161, 162, 163].

In addition, we represent for completeness in Figure 4.1(b) the Ar2 and Kr2 potential

curves [107] used in the present study. The minimum of the Kr2 (Ar2) potential energy has
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the value of −0.64 mEh (−0.46 mEh) and it arises at an equilibrium geometry of 7.585 a0

(7.109 a0). It should be mentioned that, despite the simplicity of the analytic form, both

Ar2 and Kr2 curves are accurate for the purposes of the present work, since they can reliably

describe the long-range tail of the interactions as well as the spectroscopically relevant region

around the corresponding minimum [107].
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Figure 4.1: Two-body potential energy curves used for PES I and PES II: (a) Li+Ar and

Li+Kr; (b) Ar2 and Kr2. The Li+Kr curve has been fitted in this work to ab initio data, while

the potential function for Li+Ar (Ar2 and Kr2) has been taken from Ref. [113] (Ref. [107]).

Solid (dashed) lines are used for systems with krypton (argon) atoms.

Regarding the Li+Kr2 potential, we represent the geometry and energy parameters

from PES I and PES II in Table 4.1. In comparison to both PES I and available theoretical

data, PES II tends to overestimate the Li+Kr2 dissociation energy; a similar finding has

been previously reported [113] for Li+Ar2. Furthermore, the geometry given in Ref. [160] for
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Li+Kr2 has θe= 149.9o (i.e., about 14o smaller than the corresponding value for Li+Ar2 [160]),

but those authors state that such bent minimum is very shallow and, hence, it should be

regarded as quasilinear. Also in line with the results for Li+Ar2, the PES I for Li+Kr2

underestimates the dissociation energy obtained by Andrejeva et al. [160], which has been

attributed to the BSSE correction of our ab initio data [113]. It is worth noting that the

addition of three-body interactions leads to an equilibrium bond angle of 180o in PES I for

both Li+Ar2 and Li+Kr2. Such angle becomes 104.9o (105.5o) for Li+Ar2 (Li+Kr2) in PES II.

The increase of the bonding angle on going from Li+Ar2 to Li+Kr2 may be due to a longer

Kr-Kr equilibrium distance in comparison to the Ar-Ar one.

4.3.2 Structures from PES I: Li+Arn vs. Li+Krn

We represent in Figure 4.2 the global minimum structures obtained with PES I of

both Li+Arn and Li+Krn (with n = 2 − 14). It is worth noting that both systems lead

to the same structures for most of the cluster sizes. In a limited number of cases, that is,

n = 8, 10 and 12, the global minimum structures of Li+Arn and Li+Krn are different. For

those sizes, the lowest-energy structures of Li+Arn correspond to local minima in PES I of

Li+Krn and vice versa. Although not shown in Figure 4.2, PES II leads to different global

minimum structures of the two systems only for n = 13. It appears, then, that the inclusion

of three-body terms in the interaction potentials leads to increase the difference between the

global-minimum structures of Li+Arn and Li+Krn.

The first solvation shell of both Li+Arn and Li+Krn is build up in the same man-

ner. A linear structure arise for n = 2, while the rare-gas atoms occupy the vertices of an

equilateral triangle with Li+ in the center for n = 3. In turn, a tetrahedral structure is the

global minimum for n = 4 and the addition of the fifth rare-gas atom leads to a quadran-

gular pyramid where Li+ is slightly above the base plane. Finally, the first solvation shell is

completed with six rare-gas atoms forming an octahedron with Li+ in the center. Since the

Li+−rare-gas interaction is stronger than that involving rare-gas atoms alone, the growing

clusters tend to retain the octahedral structure of the first solvation shell.



Chapter 4. Exploring the first-shell and second-shell structures arising in the
microsolvation of Li+ by rare gases 74

Table 4.1: Geometry and spectroscopy parameters(a) for Li+Kr and Li+Kr2. Energies in
cm−1 and distances in a0.

Li+Kr

Source Re De ωe

PES I, II 4.764 2867 263.4

[159] 4.762 2859 262

[160] 4.743 2899

[164, 165], experimental 4.58 3204

Li+Kr2

Source Re θe De

PES I 4.793 180.0 2591.0

PES II 4.764 105.5 3008.0

[160] 4.762 149.9 2710

(a) The parameters Re, De, ωe and θe are, respectively, the equilibrium distance, the dissoci-

ation energy of only one atom of krypton in both Li+Kr and Li+Kr2, vibrational frequency,

and the equilibrium bonding angle.

Actually, the above mentioned differences arising in the global minimum structures

of Li+Arn and Li+Krn occur in the second solvation shell. Indeed, we observe in Figure 4.2

that, for n = 8, 10 and 12, the Li+Krn global minima are more elongated than the Li+Arn

ones; in general, the latter are more symmetric structures. Nonetheless, the two types of

structures (i.e., elongated or more spherical) are quasi-degenerated for both microsolva-

tion systems. For instance, the energy of the elongated structure for Li+Kr8 (Li+Ar8) is

57.52 mEh (51.03 mEh), while the corresponding value for the more spherical one is 57.42 mEh

(51.05 mEh). We should mention that the existence of quasi-degenerated structures is an in-

dication of a very flat PES, which is dominated by the weak Ar-Ar (or Kr-Kr) interactions

that lead to small potential barriers connecting the different minima. Thus, one expects
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a “fluid-like” second solvation shell even at low temperatures (i.e., well-below room tem-

perature), where the Li+Arn and Li+Krn clusters may easily assume different low-energy

morphologies.

Figure 4.2: Global minimum structures for PES I of both Li+Arn and Li+Krn (with n =

2 − 14). In the cases where the two cluster systems lead to different structures, they are

shown by separated representations. For each structure, the symmetry point group is also

displayed.
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A clearly distinct situation arises for the first solvation shell, where the ion-rare-

gas interaction is the dominant one. In this case, the rare-gas atoms are very attached

to the lithium ion and, hence, putting one of them in any other position leads to a high

energy penalty. Because of this, the low-energy landscape essentially comprises the global

minimum structure, as it is apparent from Figure 4.3. We observe in this figure that, except

structure (i) for n = 5, all the other configurations (either minima or saddle points) fall high

in energy and differ significantly from the global minimum. We should also emphasize that

minima structures are associated to very low (though positive) normal-mode frequencies,

which is a characteristic of quite flat regions in the PES. In turn, structure (iii) for Li+Ar6

and structures (i) for Li+Ar4 and Li+Kr4 (Figure 4.3) have one low imaginary-frequency and,

hence, they may be assigned as very flat saddle-point configurations.

The analysis of the local minima in the second solvation shell of both Li+Arn and

Li+Krn clusters is based on Figure 4.4. In this figure, we represent only minima (in solid)

and saddle-points (in dashed) that, simultaneously, are separated among each other by more

than 0.1 mEh and show an RMSD larger than 0.5 a0 when compared to the corresponding

global minimum structure; We represent in this figure the energy of low-lying local minima

(in solid) and saddle-points (in dashed) as a function of the cluster size (for n ≥ 7); also

indicated through red lines for each cluster size are the lowest-energy structures that have

only five rare-gas atoms in the first solvation shell (i.e., without an octahedral core). As a

general trend from Figure 4.4, we observe that the Li+Krn clusters have more low-energy

minima than the Li+Arn ones. Also, most of the latter tends to be concentrated in a narrow

energy-window slightly above the corresponding global minimum (i.e., less than 1 mEh), while

the former are usually more separated and spread out over a larger energy-region. In turn, for

the smaller clusters it is possible to identify two sets of local minima that are distributed by

distinct energy-regions (i.e., essentially below and above 1.5 mEh), which leads to a gap that

is larger for Li+Arn. Such energy gap between the two sets of minima suggests significant

structural differences. In particular, the lowest-energy structure with five rare-gas atoms in

the first solvation shell tend to be among the upper set of minima displayed in Figure 4.4 for

each cluster size. In the case of Li+Krn clusters with n ≥ 11, however, it becomes difficult to

make a clear distinction between the two sets of minima. In accordance with this pattern,
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the lowest-energy structure with five rare-gas atoms in the first solvation shell for n = 11, 12

and 13 arises at around 1.5 mEh (or even below), which is clearly distinct from the pattern

observed for smaller cluster sizes.

Figure 4.3: Local minimum structures discovered for PES I of both Li+Arn and Li+Krn (with

n = 2 − 6). An asterisk indicates that the structure is actually a saddle point rather than

a minimum. For each structure, the first and the second values are, respectively, the energy

(in mEh) and the RMSD (in a0), both calculated in relation to the corresponding global

minimum.

In Figure 4.5, we represent the lowest-energy structures with only five atoms in

the first solvation shell for both Li+Arn and Li+Krn; these structures correspond to the red

lines in Figure 4.4. We observe in Figure 4.5 that these clusters show essentially the same
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structure for the first solvation shell, i.e., a trigonal bipyramid with the Li+ and three rare-

gas atoms forming the common base. The main difference between the Li+Arn and Li+Krn

clusters arises in the second shell for cluster sizes between n = 8 and n = 11. Whereas the

external krypton atoms are always close together (forming a kind of subcluster), the argon

atoms are more spread around the first shell, thus, having a greater interaction with the

species of the core (mainly with the ion). This may be due to the fact that the interaction

among krypton atoms is stronger than for argon. Related to this, we notice that the energy

penalty for forming such kind of structure (in spite of the global minimum) is always larger

for the Li+Arn clusters. Nonetheless, five out of eight Li+Krn structures show RMSD values

in comparison to the corresponding global minimum larger than those for Li+Arn.
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Figure 4.4: Local minima (solid lines) and saddle points (dashed lines) discovered in PES I

for Li+Arn and Li+Krn (with n = 7− 14). For each cluster size, the set of energy-minima on

the left (right) are for Li+Arn (Li+Krn). Also shown by the red lines are the lowest-energy

minima with only five rare-gas atoms in the first solvation shell. Energies are relative to the

corresponding global minimum. This representation is not intended to be exhaustive, but

it aims to give a correct qualitative picture about the distribution of the minima across the

energy-range considered.
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Figure 4.5: First low-lying local-minimum structures with 5 rare-gas atoms in the first sol-

vation shell that were discovered in PES I of Li+Arn and Li+Krn (with n = 7 − 14). Such

minima correspond to red lines in Fig. 4.4. For clearness, rare-gas atoms from the first

(second) solvation shell are displayed in cyan (brown), while Li+ is in magenta. For each

structure, the first and the second values are, respectively, the energy (in mEh) and the

RMSD (in a0), both calculated in relation to the corresponding global minimum.
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4.3.3 Mapping the low-energy minima of PES I into PES II

The influence of three-body interactions in the global minimum of Li+Arn clusters

has been the aim of our previous study [113, 146]. It has been shown that significant differ-

ences between global minima arising from PES I and PES II are apparent for several sizes of

the Li+Arn clusters. In the present work, we have performed a detailed comparison between

the global minimum structures obtained with PES I and PES II for both Li+Arn and Li+Krn

(with n = 2 − 14). Also, we have looked further at other low-energy minima, besides the

global one, for the smaller clusters (i.e., for n = 2 − 7). Specifically, we have carried out

local optimization to identify the structures in PES II that are obtained from the low-energy

minima and saddle-points of PES I.

Figure 4.6 shows the mapping of low-energy minima and saddle-point structures of

PES I into PES II; the average energy per rare-gas atom as a function of the size of the

cluster is represented for Li+Arn and Li+Krn (with n = 2 − 7). One may observe that, for

both systems, the energy per rare-gas atom of the global minima in PES I increases with

the cluster size, while it shows a non-monotonous behavior in PES II (i.e., it decreases up to

n = 4 and, then, increases or n ≥ 5). Such energetic pattern arising for both microsolvation

systems has been previously indicated as one of the most relevant outcomes revealing the

importance of incorporating three-body interactions in the PES of Li+Arn clusters [113, 146].

It is worth noting from Figure 4.6 that, by local optimization from various minimum

and saddle-point structures of PES I, we can only produce one or two minima in PES II for

both Li+Arn and Li+Krn. Thus, PES I appears to be more complex than PES II for the two

systems, in the sense that it comprises a larger number of low-energy minima. In the case

of Li+Arn, however, there are additional saddle-point structures in the PES II that map to

minima or saddle-points in PES I. It is particularly interesting to observe in the top panel of

Figure 4.6 that no structure of Li+Ar2 and Li+Ar3 maps to the corresponding global minimum

structures in PES II. Conversely, it is possible to obtain Li+Kr2 and Li+Kr3 global minima

in PES II departing from the lowest-energy structures in PES I. Indeed, Figure 4.6 reveals

the existence of several saddle-point structures in the Li+Arn PES II that are not present in

the case of the Li+Krn system, even though the former is expected to be, generally, more flat
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than the latter one.

As it has been already noted for the Li+Arn clusters [113, 146], the main influence of

three-body interactions in the structures from the first solvation shell occurs for Li+Kr2 and

Li+Kr3; one recalls that the Li+Kr2 (Li+Kr3) global minimum in PES I has a linear (planar)

geometry, while it becomes a bent (pyramidal) structure in PES II. In turn, global minimum

structures for n = 4− 6 (and also for Li+Kr7, Li+Ar7 and Li+Ar8 that already have atoms in

the second solvation shell) are those presented in Figure 4.2 and, by contrast, they are the

same in PES I and PES II; see also Refs. [113, 146].

However, second-shell global minimum structures from PES I and PES II show

significant differences for n ≥ 9 (n ≥ 8) for Li+Arn (Li+Krn). For these larger clusters,

PES I tends to generate global minimum structures with the ion in a more peripheral position

than that from PES II. To make easier the discussion that follows, we designate the former

(latter) as A (B); both types of structures for n = 9 and n = 14 are illustrated in Figure 4.7.

Note that these structures are similar for Li+Arn and Li+Krn clusters. In turn, Table 4.2

represents the total energy of structures A and B for both PES I and PES II of Li+Kr9 and

Li+Kr14, as well as the corresponding contributions from the first and the second solvation

shells, and the interaction between first- and second-shell species. The energy difference

between structures A and B tends to increase for both PESs with the size of the cluster.

In particular, such difference even reaches 3.8 mEh for n = 14 with the PES I. One may

observe from Table 4.2 that, as expected, the energy contribution from the first solvation

shell is identical from both structures. In turn, the second-shell configuration of structure

A is always energetically favored, while the contribution from the interaction between the

first- and second-shell particles benefits structure B. Thus, the adoption of structure A or B

results from a subtle balance between these two contributions for both PES I and PES II.
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Figure 4.6: Minima (solid lines) and saddle-points (dashed lines) of PES II obtained by

local optimization from the low-energy structures of PES I (as shown by the dotted lines),

including the global one; the y-axis refers to the average energy per rare-gas atom. Top panel

is for Li+Arn (n = 2− 7) clusters, while bottom panel corresponds to the Li+Krn (n = 2− 7)

ones. Minima from PES I (PES II) are in green (light blue).
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Figure 4.7: A- and B-type structures for n = 9 and n = 14 of Li+-rare-gas clusters; Li+ is

displayed in magenta, while rare-gas atoms are in cyan.

When going from structure A to structure B, the energy contribution from the

second-shell configuration varies by 1.6 mEh (8.3 mEh) for Li+Kr9 (Li+Kr14) with the PES I,

while the counterpart from the first shell – second shell interaction is only−1.3 mEh (−4.2 mEh);

accordingly, structure A is the most stable in PES I. The reverse arises in the case of PES II,

where the corresponding values for Li+Kr9 (Li+Kr14) are 1.5 mEh (7.1 mEh) and −3.2 mEh

(−8.0 mEh); hence, structure B is the most stable in PES II. Although not shown, a similar

result is obtained for the analogous Li+Arn structures.
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Table 4.2: Energy analysis of the A-type and B-type structures of Fig. 4.7 in PES I and
PES II. In each case, first entry corresponds to structure A, while second entry is for structure
B.

Li+Kr9 Li+Kr14

energy contribution (mEh) PES I PES II PES I PES II

total -60.0 -91.4 -74.1 -110.3

-59.6 -92.9 -70.3 -111.4

first shell -53.1 -82.0 -52.8 -81.9

-53.1 -81.9 -53.1 -82.1

second shell -1.90 -1.92 -9.7 -9.0

-0.25 -0.37 -1.4 -1.9

first shell – second shell -5.0 -7.4 -11.6 -19.4

-6.3 -10.6 -15.8 -27.4

4.3.4 Re-optimization of low-energy structures at the MP2 level

In order to evaluate the reliability of the low-energy structures given by PES I and

PES II for both Li+Arn and Li+Krn, we have performed the re-optimization at the MP2/aug-

cc-pVTZ level of all minima and saddle-points obtained for n = 2 and 3, in a total of 17

geometries (cf. Figure 4.6). From the results displayed in Figure 4.8, we may conclude that

all (minima) structures considered from PES I, independently of the system, are reproduced

and keep the same energetic order at the MP2 level; also, the geometry only slightly changes

during the optimization procedure. Conversely, a more complex situation occurs for the

structures from PES II, since the geometry optimization produces either different structures

or changes the type of the stationary point (from a saddle-point to a minimum).
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Figure 4.8: Low-energy stationary points obtained at the MP2/aug-cc-pVTZ level of theory

by local optimization from PES I and PES II structures for both Li+Arn and Li+Krn (with n =

2 and 3). Each structure is labeled as minimum (min) or saddle-point (sp), and the numerical

values over the arrows are for the corresponding RMSDs in a0 (no value appears over the

arrow when the RMSD is essentially zero). Values and labels in parenthesis are for Li+Krn,

while the remaining ones are for Li+Arn. The energy arrows refer to the energetic order of

the structures in PES I and PES II. The MP2 energies (in Eh) for the left-side structures,

from bottom up, are -1061.320180 and -1061.310773 (-1588.355893 and -1588.346910) for

Li+Ar2 (Li+Ar3), and -5511.730154 and -5511.719004 (-8263.970194 and -8263.959900) for

Li+Kr2 (Li+Kr3). The corresponding values for the right-side structures are -1061.320180

and -1061.310696 (or -1588.355893, -1588.346835 and -1588.346910) for both minima and

the saddle-point of Li+Ar2, respectively (for Li+Ar3), and -5511.730154 and -5511.718913 (or

-8263.970194) for Li+Kr2 (Li+Kr3). Colors for rare-gas atoms and Li+ are as in Fig. 4.7.
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Figure 4.9: Low-energy minima obtained at the MP2/aug-cc-pVTZ level of theory by local

optimization from PES I minima for Li+Ar8 and Li+Kr8. In each case, the energies of the

minima are referred to the lowest-energy structure. As in Fig. 4.4, the red lines indicate

structures from PES I that have only 5 rare-gas atoms in the first solvation shell.

For Li+Ar2, the highest-energy structure changes the geometric motif during the

optimization though keeping as a saddle-point, while the two lowest-energy structures (i.e.,

the bent minimum and the linear saddle-point) lead both to the MP2 global minimum (with

a linear geometry). In the case of Li+Ar3, the highest-energy saddle-point is transformed

into a minimum at the MP2 level (with essentially the same geometry as in PES II, but

changing the energetic order with respect to the other saddle-point), and both the lowest-

energy minimum and saddle-point change their structures upon re-optimization. In turn, the

PES II structures for both Li+Kr2 and Li+Kr3 keep the same type of stationary point, but

varies the geometry by the re-optimization at the MP2 level of theory.
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Furthermore, we have investigated how the low-energy landscapes of Li+Ar8 and

Li+Kr8 given by PES I map to the MP2/aug-cc-pVTZ level of theory; this is the smallest

cluster size where differences can be found in global-minimum structures of both systems.

Thus, structures corresponding to the energy-levels displayed in Figure 4.4 have been re-

optimized at that level of theory. The use of triple-zeta basis set in spite of the quadruple-

zeta one is due to the high computational cost to treat these aggregates. Figure 4.9 shows a

diagram where the low-energy minima of PES I are connected through dotted lines with the

corresponding re-optimized MP2 configurations.

A first glance from Figure 4.9 shows that the optimization at the MP2 level leads

to a better energy discrimination among different structures of both Li+Ar8 and Li+Kr8 that

are quasi-degenerated in PES I. Because more than one structure in PES I leads to the same

minimum after re-optimization at the MP2 level, it is likely that PES I overestimates the

number of minima, especially for Li+Arn clusters. In particular, the global minimum energy

structure of the MP2 optimization is obtained from the global and three local minima of the

PES I, including the highest energy that have only five argon atoms in the first solvatation

shell.

It is also interesting to note in Figure 4.9 that the energy range of the minima

resulting from the MP2 optimization is very different between Li+Ar8 and Li+Kr8. While the

MP2 Li+Ar8 minima spawn essentially the same energy-range of the corresponding ones from

PES I, there are minima in the case of Li+Kr8 that become very high in energy. Moreover, the

structures of Li+Kr8 found by the MP2 optimization exhibit energy differences for the ground

state larger than the ones observed from PES I. For example, the local minima in PES I (MP2)

with the highest energy shown in Fig. 4.9 is 2.3 mEh (4.7 mEh) above corresponding ground

state.

Additionally, we observe in Fig. 4.9 an energy inversion between the global mini-

mum and the second-lowest energy minimum of Li+Kr8 upon MP2 optimization. A similar

behavior has been apparent for the corresponding minimum structures of PES I and PES II,

as discussed in Section 4.3.3 for Li+Arn and Li+Krn clusters from the second solvation shell.

In turn, we show in Table 4.3 that, for Li+Kr8, the global minimum structure from PES I has
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a lower MP2/aug-cc-pVTZ energy than the one from PES II. However, the MP2 optimization

departing from those structures leads to an inversion in the energy order of the two minima;

the two optimized structures are quasi-degenerated (the energy difference is ∼ 0.1 mEh), but

they are structurally distinct since the corresponding RMSD value for the best overlap is

0.58 a0.

Table 4.3: Ab initio total energies (in Eh) obtained from single-point calculations and after
geometry optimization for the global minimum structures of Li+Kr8 in PES I, PES II and
PES I without including the Kr3 ATM term; all calculations were carried out at the MP2/aug-
cc-pVTZ level of theory.

Li+Kr8 global minimum structures

PES I PES II PES I (without ATM)

Single-point -22025.142005 -22025.139829 -22025.142073

After optimization(a) -22025.142397 -22025.142529 -22025.142530

(a) By using a convergence criterion of 1.0×10−6Eh, the number of optimization steps carried

out from the global minimum structures of PES I, PES II and PES I (without ATM) is 18,

10 and 45, respectively.

It is reasonable to expect that the difference in the global minimum structures of

PES I and PES II arise due to the Kr3 ATM interaction term. Indeed, when excluding the

ATM term from PES I, one obtains a global minimum structure which leads to an energy

similar to the one from PES II after MP2 optimization, and the two geometries are actually

identical (i.e., RMSD=0.04 a0). Although not shown in Table 4.3, the re-optimization at the

MP2 level of the Li+Ar8 structures corresponding to the global minimum of PES I, PES II

and PES I without the ATM contribution leads always to the same geometry.
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4.4 Conclusions

We have carried out a detailed global optimization study in order to figure out the

low-energy landscape of the clusters resulting from the microsolvation of Li+ by either argon

or krypton atoms. A thorough comparison resorting to the effect of the solvent species on

the structure and energetics has been performed for clusters with up to 14 rare-gas atoms.

All calculations for the Li+Arn clusters employed previously proposed [113, 146] PESs that

include either both two- and three-body interactions (PES I) or just the two-body terms

(PES II). As for the Li+Krn clusters, we have developed analogous PES I and PES II based

on ab initio energies that were calculated at the CCSD(T)/aug-cc-pVQZ level of theory and

corrected for the BSSE with the CP methods.

The global minimum structures obtained from PES I are, in general, similar for both

Li+Arn and Li+Krn. However, most of the Li+Arn low-lying minima tends to be concentrated

in a narrow energy-window close to the corresponding global minimum, while the Li+Krn ones

are in larger number and spread out over the energy range.

We have also shown that, independently of the microsolvation systems, distinct ener-

getic patterns are apparent when comparing structures from first and second solvation shells.

Indeed, the energy gap between local minima is larger for clusters with the uncompleted first

solvation shell, which can be attributed to the stronger Li+-rare-gas interaction. Accord-

ingly, the octahedral structure of the first solvation shell is maintained for larger clusters,

since there is a high-energy penalty when one rare-gas atom is removed from the neighbor-

hood of Li+ to a more external position. In contrast, clusters from the second solvation shell

show a panoply of energetically similar low-lying minima that, in apparently flat PESs like

the present ones, are expected to inter-convert among each other, even at low temperatures.

Thus, we believe that the first solvation shell has a rigid structure, while the second solvation

shell presents a “fluid-like” behavior.

The comparison between the lowest-energy minimum structures from PES I and

PES II shows that significant differences arise for Li+Arn (Li+Krn) at n = 2, 3 and n = 9−14

(n = 2, 3 and n = 8−14). The latter structures contain rare-gas atoms in the second solvation
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shell with the ion essentially in the center (off-center) for PES II (PES I). The stability of

such type of structures result from a subtle balance between the interaction involving the

second-shell atoms alone and that from the inter-shell species energy contribution. In turn,

re-optimization of the n=2 and 3 low-energy minima from both PES I and PES II at the

MP2/aug-cc-pVTZ level of theory have confirmed that the incorporation of three-body terms

in the PES is essential to reproduce the main structural motifs. Furthermore, we have also

re-optimized Li+Ar8 and Li+Kr8 low-energy structures at the MP2 level. It is worth noting

that the MP2 Li+Ar8 (Li+Kr8) minima spawn essentially the same (larger) energy-range of

(than) the corresponding ones from PES I. In turn, the energy inversion between the global

minimum and the second-lowest energy minimum in PES I of Li+Kr8 upon MP2 optimization

has been attributed to the Kr3 ATM interaction term. Due to this kind of energy re-order, we

advocate the use of several minima in the post-optimization procedure so that one increases

the probability to get the global minimum structure at a higher level of theory.

SUPPORTING INFORMATION

Additional supporting information may be found online in: https://onlinelibrary.

wiley.com/action/downloadSupplement?doi=10.1002



Chapter 5

Microsolvation of Li+ in a mixture of

argon and krypton: unveiling the

most stable structures of the clusters

The microsolvation of Li+ by both argon and krypton atoms has been studied based

on a new potential energy surface that includes two- and three-body interactions; the po-

tential terms involving the lithium ion were calibrated with CCSD(T)/aug-cc-pVQZ ener-

gies after corrected for the basis-set superposition error. The structures of the Li+ArnKrm

(n + m ≤ 20) clusters arising from global optimization show a first solvation shell prefer-

entially occupied by krypton atoms. This binary-solvent microsolvation clusters are most

stable when the total number of krypton (argon) atoms occupy the first (second) solvation

shell.

5.1 Introduction

Solvation is a ubiquitous phenomenon in chemistry, which has been treated under

several perspectives from both the experimental and theoretical sides. Perhaps the most

detailed way to look at such a physical process is by using the microsolvation approach

91
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where the solvent entities (atoms or molecules) are added stepwise to the solute [145]. This

leads to the formation of clusters that grow, and whose structural and energetic properties

explain about the way the solvent surrounds the solute. From the theoretical side, the major

challenges to set up the study of microsolvation are twofold: (i) accurately describe the

interaction potential, and (ii) efficiently optimize the clusters to discover the lowest-energy

structure (and, eventually, other low-energy minima). In general, the former requires the

use of state-of-the-art methods to perform electronic-structure calculations that are, then,

employed in a least-squares fit [21] to an adequate analytical potential function (see, e.g.,

Refs. [135, 140]). In turn, the latter is a very active area of research whose endeavor has given

fruitful results, with the development of state-of-the-art global-optimization algorithms [59,

92, 81, 103, 166] that have been already applied in the study of microsolvation clusters [140,

167, 117, 113, 146, 18].

The most used approach comprises using state-of-the-art techniques to carry out

global geometry optimization of the microsolvation clusters modelled with an adequate an-

alytical interaction potential that has been previously fitted to ab initio data (see, e.g.,

Refs. [135, 140]); the obtained minima structures are, then, re-optimized at a higher level

of theory to get more accurate energy values. Although alternative approaches have been

proposed [90, 134], they are computationally more expensive.

Among the great number of publications related to the study of solvation, those

involving the formation and characterization of small ionic clusters have attracted much

interest [168, 169, 170, 142, 171, 172]. Indeed, a great variety of clusters with ionic species

and atomic and molecular systems, respectively, as solutes and solvents have been the subject

of recent studies (see, e.g., Refs. [173, 174, 175, 176, 177, 178] and references cited therein).

These charged clusters can be used to gain detailed insight into solvation phenomena at the

molecular level by establishing the bridge connecting the isolated ion in the gas-phase and

the solvated ion in solution.

In previous studies, we have assessed the importance of including up to three-body

interactions for describing the microsolvation of Li+ with either argon [113, 146, 13] or kryp-

ton [13] atoms. Here, we explore the ability of a similar potential model to reproduce the
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main structural features of microsolvation clusters that contain Li+ and atoms of both argon

and krypton. To our knowledge, this is one of the first works on the solvation of an alkaline

ion by mixtures of rare gases. In contrast, heterogeneous rare-gas clusters have received

the attention of theoreticians and experimentalists [179, 180, 104, 181, 182, 183]. One of

the central issues discussed in such studies is the preferential site occupancy of the different

types of atoms in the rare-gas aggregates. In the particular case of large heterogeneous Ar-Kr

clusters, though it can occur that some krypton atoms are present on the surface and some

argon atoms in the bulk, the most favorable structure show preferentially krypton atoms in

the bulk and argon atoms on the surface [184].

In this paper, we investigate solvent-selectivity effects in heterogeneous clusters re-

sulting from the microsolvation of Li+ with both argon and krypton. To achieve that purpose,

we have employed an evolutionary algorithm to perform a global optimization study on the

Li+ArnKrm clusters. More specifically, we have investigated the preferential location of ar-

gon and krypton atoms around the lithium ion, and whether the two rare-gases are mixed

together or, conversely, tend to be separated when forming the microsolvation cluster.

5.2 Li+ArnKrm Potential

Based on our previous works on Li+Arn and Li+Krn [113, 146, 13], we have developed

a new potential energy surface (PES) to model the mixed Li+ArnKrm clusters. The analytical

representation of the PES is given by the expression:
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+
∑
j

∑
m

VLi+ArKr(Rij, Rim, Rjm) +
∑
j

∑
k>j

∑
l>k

VAr3(Rjk, Rkl, Rjl)

+
∑
m

∑
n>m

∑
o>n

VKr3(Rmn, Rno, Rmo) +
∑
j

∑
m

∑
n>m

VArKr2(Rjm, Rjn, Rmn)

+
∑
j

∑
k>j

∑
m

VAr2Kr(Rjm, Rkm, Rjk) (5.1)

where the index i refers to the Li+ ion and indices j, k, and l (m, n, and o) label three

distinct argon (krypton) atoms of the cluster system. The VLi+ArKr term was obtained in

the present work (see below), while the other ones were taken from Ref. [113] (VLi+Ar and

VLi+Ar2), Ref. [13] (VLi+Kr and VLi+Kr2), Ref. [107] (VAr2 and VKr2), and Ref. [103] (VArKr).

Although the improved Lennard-Jones function of Pirani and collaborators [185, 186, 187],

which has three parameters with a precise physical meaning, could be preferred to model the

pair-wise interactions in Eq.(5.1), we adopted for consistency the same type of potentials as

in our previous works on Li+–rare-gas clusters [113, 146, 13]. In addition, we have employed

the Axilrod-Teller-Muto function [148, 149, 150] to describe all the three-body rare-gas in-

teractions, whereas the corresponding C9 parameters were obtained from Ref. [151] for VAr3

and VKr3 , and Ref. [188] for VArKr2 and VAr2Kr.

The three-body Li+ArKr interaction for different energies have been calculated at

the CCSD(T)/aug-cc-pVQZ level of theory, followed by the correction for the basis-set su-

perposition error (BSSE), which uses the counter-poise method [112]; all calculations were

performed by using the GAMESS software package [189]. The aug-cc-pVQZ atomic basis

sets for Li, Ar and Kr atoms are given in Refs. [53], [109] and [56], respectively. In the

calculations, 5 (14) orbitals for each Ar (Kr) atom were frozen. Specifically, the Li+ArKr

three-body term is obtained by fitting the analytic function which establishes the interaction
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between the dipoles on argon and krypton atoms induced by the lithium cation, that is,

VLi+ArKr(RLi+Ar, RLi+Kr, RArKr) =

[
~µAr · ~µKr

R3
ArKr

− 3
(~µAr · ~RArKr)(~µKr · ~RArKr)

R5
ArKr

]
× χdisp(βdisp, γdisp, RArKr) (5.2)

In Eq. (5.2), ~µAr (~µKr) is the dipole induced on the Ar (Kr) atom due to the Li+ ion, which

is defined as:

~µAr(Kr) = αAr(Kr)

[
χpol(βpol, γpol, RLi+Ar(Kr))

]1/2 ~RLi+Ar(Kr)

R3
Li+Ar(Kr)

(5.3)

where αAr (αKr) is the Ar (Kr) polarizability. In Eqs. (5.2) and (5.3) the χ damping functions

have the form:

χ(β, γ, R) =

 1 R > β;

exp [−γ(β/R− 1)2] R ≤ β.
(5.4)

To maintain consistency with three-body VLi+Ar2 and VLi+Kr2 terms, we have used the

parameters found in Refs. [113] and [13] to describe the ~µAr and ~µKr induced dipoles. Thus,

only the χdisp parameters were adjusted in the present paper. Within such conditions, the

least-squares fit of the three-body VLi+ArKr term to 180 ab initio energies (that were calculated

at different geometries of the Li+ArKr species) led to the values βdisp = 8.8598074 a0 and

γdisp = 0.73526948; the root-mean-square deviation obtained for this fitting was 8.2×10−5 Eh.

In Figure 5.1, the potential energy curves of the diatomic species Ar2, Kr2 and

ArKr (top panel), and Li+Ar and Li+Kr (bottom panel) employed in the Li+ArnKrm PES

[Eq. (5.1)]. The interactions that involve Kr atoms have a deeper potential well and a larger

equilibrium distance when compared with the Ar ones. In this sense, the ArKr interaction

potential is a middle ground between the Ar2 and Kr2 potentials. The minimum of the

ArKr potential energy has the value of −0.53mEh and it arises at an equilibrium geometry

of 7.350 a0, while to Kr2 (Ar2) the potential minimum is −0.64mEh (−0.46mEh), and the

equilibrium geometry is 7.585 a0 (7.109 a0).
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Figure 5.1: Potential energy curves for pair interactions involving the rare-gases (top panel)

and for Li+ with Ar and Kr atoms (bottom panel).

Similar behavior is observed for Li+Ar2, Li+Kr2 and Li+ArKr triatomic species,

where the latter has a minimum potential of -22.7 mEh, while the other two are, respectively,

−20.5mEh and −24.9mEh. The energy differences between the minima of the systems

Li+Ar2 and Li+ArKr, and Li+Kr2 and Li+ArKr, are slightly smaller than the energy difference
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between the diatoms Li+Ar and Li+Kr (about 2.5mEh) [13], and is because of the influence

of the three-body interaction terms. Another interesting aspect is that the energy required

to remove the argon atom from Li+ArKr (De = 2106.0 cm−1) is less than to remove the same

atom from system Li+Ar2 (De = 2162.3 cm−1). On the other hand, it takes more energy

to remove Kr from system Li+ArKr (De = 2643.1 cm−1) than from system Li+Kr2 (De =

2591.0 cm−1). The reasoning for these observations may be found in the charge distribution

for both argon and krypton atoms. From the analysis of Mulliken’s population (see Table S1

in the Supporting Information), one concludes that the effective charge in the argon (krypton)

atom is smaller (larger) in Li+ArKr than in Li+Ar2 (Li+Kr2); hence, argon (krypton) shares

less (more) electrons with Li+ in Li+ArKr than in Li+Ar2 (Li+Kr2).

5.3 Microsolvation Clusters: Energetics and Structure

We have searched for the global minimum structures of the Li+ArnKrm clusters

by applying an evolutionary algorithm (EA) developed in our group [103]. Basically, the

EA evolves a pool of structures that are possible solutions for the global optimization prob-

lem. For that, it combines the generalized Cut&Splice crossover and sigma mutation oper-

ators [155] to explore different regions of the potential energy surface of the cluster with a

local optimization procedure for the exploitation of a given basin of attraction. Since the

exchange of positions between argon and krypton atoms within a structural motif may lead to

different energy minima, the EA is equipped with a swap-mutation operator which attempts

to explore the space of the homotop configurations [121]. Also, the strategy adopted for the

replacement of structures in the pool, which is based on the comparison of both the energetic

and structural properties of the clusters, is a key feature of the algorithm to reach good

results [16]. Indeed, such a strategy aims at maintaining a certain degree of diversity in the

pool of possible solutions over the global optimization procedure. Further details about the

EA, including the best settings of the algorithm (also applied in this work), can be obtained

from either the original paper [103] or a recent review [64].
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Figure 5.2: Putative global minimum for all compositions of the Li+ArnKrm microsolvation

clusters up to N = 10 (with N = n + m). All clusters are modeled by the analytical PES.

Green (blue) spheres represent the argon (krypton) atoms.

Figure 5.3: Putative global minimum structures of the Li+(ArKr)N/2 (N = 12− 20) clusters

that are modeled by the analytical PES. Green (blue) spheres represent the argon (krypton)

atoms.

The putative global minimum structures of the analytical PES that were obtained
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with the EA are represented in Figure 5.2 and Figure 5.3; the corresponding Cartesian

coordinates and energies are given in the Supporting Information. We have studied the

Li+ArnKrm clusters up to N = n+m = 10 for all compositions of the rare-gases. In turn, we

display in Figure 5.3 the lowest-energy structures for clusters with an equal number of argon

and krypton atoms for 12 ≤ N ≤ 20. One observes in Figure 5.2 that the shape of the global

minimum is independent of the composition for almost all cluster sizes up to N = 7. The

only exception to this trend occurs for N = 5, where the structures with either one argon

or one krypton show a distorted pyramidal geometry. It is worth noting that the regular

square pyramid observed for the other clusters with N = 5 does not appear even as a local

minimum for Li+Ar4Kr1 and Li+Ar1Kr4.

A different situation is apparent in Figure 5.2 for N ≥ 8. Indeed, the homogeneous

clusters Li+Ar8 and Li+Kr8 (as well as Li+Ar10 and Li+Kr10) show different structures, as

already noticed in previous work [13]; hence, modifications in the shape of the global minima

would be expected as the composition is changed from Ar-rich to Kr-rich clusters. Nonethe-

less, the global minimum structures for most of the N = 8 compositions are like that for the

homogeneous Li+Kr8 cluster. Although such a trend is also apparent for N = 10, a larger

diversity of structures arises among all the compositions of this cluster size. In turn, it is

interesting to observe in Figure 5.2 that, despite showing equal structures for both N = 9

homogeneous clusters, the geometrical motif for Li+Ar7Kr2 and Li+Ar8Kr1 appears to result

from growing the Li+Ar8 global minimum. We should mention that such structural diversity

is consistent with the panoply of minima having similar energies that arises within the second

solvation-shell of both Li+Arn and Li+Krn clusters [13].

We also observe in Figure 5.2 and Figure 5.3 that the krypton atoms occupy pref-

erentially the first solvation shell, which always show an octahedral geometry, and the argon

atoms go to the second solvation shell. This competition between krypton and argon to

occupy positions closer to the ion can be attributed to fact that the Li+-Kr interaction is

stronger than the Li+-Ar one (cf. Figure 5.1). Moreover, we have verified by re-optimization

at the MP2/aug-cc-pVTZ level for the Li+ArKr8 cluster that the global minimum is the

structure where the first solvation shell is totally filled with krypton atoms [Figure 5.4(a)]
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rather than having the argon closer to Li+ [Figure 5.4(b)].

(a) (b)

Figure 5.4: Geometries obtained by local optimization at the MP2/aug-cc-pVTZ level of

theory for the Li+ArKr8 global minimum (a) and the lowest-energy minimum with the argon

atom in the first solvation shell (b). Green (blue) spheres represent the argon (krypton)

atoms.

Although we should note that MP2 describes poorly the dispersion interactions

involving rare-gas atoms [190], the present calculations are reasonable since we just want to

carry out a comparison between the most stable structures of the Li+ArKr8 cluster. The

energy difference between these two structural motifs from the analytical PES and given

by the MP2 calculations are 0.65 mEh and 0.82 mEh, respectively. The consistency of these

results indicates that the present analytical PES has the ability to realistically describe the

heterogeneous Li+ArnKrm aggregates.

We also emphasize that argon and krypton do not appear to mix with each other

in the microsolvation cluster, because the Kr-Kr interaction is stronger than the Ar-Kr and

Ar-Ar ones (see Figure 5.1). Thus, the global minima for N ≥ 12 (with an equal number of

the two rare-gases) tend to display structures where sub-clusters of either argon or krypton

can be clearly identified. In particular, for N = 18 and N = 20, there are two external argon

sub-clusters separated by a central sub-cluster that contains the ion and the krypton atoms
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(see Figure 5.3).

We now look further at the energetics involved in the formation of heterogeneous

microsolvation clusters for each size, N . Figure 5.5 shows that, at a given N , the energy

per rare-gas atom increases (decreases in absolute value) as krypton is replaced by argon,

and such behavior is almost linear with the number of Ar atoms. For small cluster sizes,

the energy variation is quite marked due to the large difference between the Li+-Ar and

Li+-Kr interactions, i.e., the potential of the latter is more attractive than the former one

(cf. Figure 5.1).
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Figure 5.5: Energy per atom of rare-gas as a function of number (n) of Ar atoms in the

composition of the microsolvation Li+ArnKrN−n clusters. Each line corresponds to a given

number N of rare-gas atoms (as inserted in the plot).

Furthermore, we may also observe in Figure 5.5 that, up to the closure of the first

solvation shell, the energy variation with the composition is highly sensitive to the size of the
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cluster, which may be because of the three-body interactions involving the ion. Conversely,

the variation of energy for larger clusters is dominated by the weak interactions involving the

rare-gas atoms (cf. Figure 5.1). Indeed, the energy lines in Figure 5.5 become almost parallel

for N ≥ 6, which also reflects the small difference in the rare-gas three-body interactions as

N increases.

The relative stability of the mixed microsolvation cluster regarding the correspond-

ing aggregates having only Ar or Kr atoms may be evaluated by computing the excess en-

ergy [191]:

E∗exc(n,N) = E(Li+ArnKrN−n)− nE(Li+ArN)

N
− (N − n)

E(Li+KrN)

N
(5.5)

where the first term is the global minimum energy of the mixed cluster, and E(Li+ArN)/N

(E(Li+KrN)/N) is the energy per rare-gas atom of Li+ArN (Li+KrN). We should note that

Eq. (5.5) allows to calculate the excess-energy curve for each N as function of n argon

numbers. These curves are represented in Figure 5.6 for clusters up to N = 10.

Whereas the most stable clusters are associated with minima of the excess energy,

values of E∗exc greater than zero indicate unfavorable compositions. It is clear from Figure 5.6

that, up to N = 6, all the mixed compositions are unfavorable in relation to Li+ArN and

Li+KrN . As the aggregate increases beyond the first solvation shell, some compositions of

the heterogeneous clusters become stable. We can see from Figure 5.6 that, independently of

N , the most stable composition arises for clusters with 6 krypton atoms, which are expected

to occupy the first solvation shell (see Figure 5.2).

Additionally, the second energy difference for each cluster size, i.e.,

∆2E(n,N) = −2E(Li+ArnKrN−n)

+E(Li+Arn+1KrN−n−1) + E(Li+Arn−1KrN−n+1) (5.6)

establishes the stability of clusters in relation to the neighboring compositions.
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Figure 5.6: Excess energy as a function of number of Ar (n) in the composition of the

microsolvation Li+ArnKrN−n clusters. Each line corresponds to a given number N of rare-

gas atoms (as inserted in the plot).

Thus, the inspection of Figure 5.7 shows that, for each curve with N ≥ 7, the

single prominent-peak corresponds to the cluster whose composition has 6 krypton atoms.

This confirms the stability of structures with a first solvation shell totally filled with krypton

atoms. Another interesting feature observed in Figure 5.7 is the small peak arising for each

curve with N ≥ 6, which appears to be the signature of a certain relative stability (though

very weak) of clusters with the first solvation shell filled with 3 argon and 3 krypton atoms.

The energy of the putative global minimum structures for microsolvation clusters

with an equal number of argon and krypton atoms is represented in Figure 5.8.
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Figure 5.7: Second energy difference as a function of number of Ar (n) in the composition

of the microsolvation Li+ArnKrN−n clusters. Each line corresponds to a given number N of

rare-gas atoms (as inserted in the plot).

It is shown in this figure that the energy per rare-gas atom strongly increases up

to N = 8. The energy continues to increase for larger clusters, but at a lower rate since

the rare-gas atoms become far apart from the ion. Moreover, we also show in Figure 5.8 for

N ≥ 10 (N ≥ 12) the energy of local minima of clusters corresponding to structures with

three (six) argon atoms in the first solvation shell.

As expected, the stability of the clusters decreases as more krypton atoms of the

first solvation shell exchange positions with argon atoms from the second solvation shell.
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Figure 5.8: Energy of the Li+(Ar Kr)N/2 (N = 2− 20) clusters. The energy per atom of rare

gas is represented by the black lines (and dots) for the global minimum structures, while

the red (blue) line are for the corresponding clusters where three (six) krypton atoms of

the first solvation shell exchange their positions with the same number of argon atoms from

the second solvation shell. The inset is an enlargement of the plot to detail the differences

between the three lines.

It is worth noting in Figure 5.8 that the difference in the energy per rare-gas atom

between the global minimum and the corresponding structures from the other two motifs

keeps at a relatively small value as N increases. Nonetheless, one expects that high energy

barriers must be overtaken when dynamically exchange a krypton atom from the first solva-

tion shell by an external argon. In this sense, it becomes important to carry out a detailed

study of the thermodynamic properties of these ionic aggregates. Note that a correct descrip-

tion of structural, energetic, dynamical and thermodinamical properties of the first solvation
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shell of the heterogeneous Li+ArnKrm clusters might be very sensitive to the accuracy of the

potential energy.

5.4 Conclusions

We have developed an analytic PES to model the low-energy structures of the

Li+ArnKrm clusters. By using this PES and global optimization techniques, we have stud-

ied the energetics and the structure of clusters resulting from the microsolvation of Li+ in

a mixture of argon and krypton. The most stable structures of the microsolvation clusters

show an octahedral first solvation shell totally filled with six krypton atoms, while argon is

preferentially placed in the second solvation shell. This result was confirmed for Li+ArKr8 by

ab initio calculations at the MP2/aug-cc-pVTZ level of theory, which is also an indication of

the adequacy of the present PES to describe the energy landscape of the Li+ArnKrm clusters.

Additionally, our study shows that, even for larger clusters, the two types of rare-gas atoms

are unlikely to be mixed. Indeed, the microsolvation of the ion leads to formation of clusters,

where distinct argon and krypton sub-clusters are apparent. Finally, we should also note that

the structures reported in this paper may be used in a future work as starting geometries

for evaluating thermodynamic properties of the Li+ArnKrm clusters through Monte-Carlo

parallel-tempering technique.

SUPPORTING INFORMATION

Additional supporting information may be found online in: https://pubs.acs.

org/doi/suppl/10.1021/acs.jpca.9b00960/suppl file/jp9b00960 si 001.pdf



Chapter 6

Modeling microsolvation clusters with

electronic-structure calculations

guided by analytical potentials and

machine learning techniques

We propose a new methodology to study, at the density functional theory (DFT)

level, the clusters resulting from the microsolvation of alkali-metal ions with rare-gas atoms.

The workflow begins with a global optimization search to generate a pool of low-energy

minimum structures for different cluster sizes. This is achieved by employing an analytical

potential energy surface (PES) and an evolutionary algorithm (EA). The next main stage

of the methodology is devoted to establish the adequate DFT approach to treat the the

microsolvation system, through a systematic benchmark study involving several combinations

of functionals and basis sets, in order to characterize the global minimum structures of the

smaller clusters. In the next stage, we apply machine learning classification algorithms to

investigate how the low-energy minima of the analytical PES connect to the DFT ones.

Unveiling this connection may provide useful insight to guide the choice of the most promising

low-energy minima of large clusters to be optimized at the DFT level of theory. In this work,

the methodology was applied to the Li+Krn (n = 2 − 14) microsolvation clusters for which

107
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the most competitive DFT approach was found to be the B3LYP-D3/aug-pcseg-1.

6.1 Introduction

The study of microsolvation clusters is a relevant methodology explored by modern

experimental techniques [192, 143, 193, 194], state-of-the-art computational approaches [117,

167, 195, 196, 197, 2] or both [198]. This allows to acquire insightful information about

the energetics and structural properties of the clusters that have a role in the nucleation

and solvation processes, thus, contributing to understand these phenomena at the molecular

level.

The theoretical study of microsolvation may follow two different approaches. One

method [140] searches for low-energy structures associated to an analytical potential energy

surface (PES), which are then re-optimized at a higher level of theory, i.e., by using ab initio

methods or density functional theory (DFT). The other approach [199, 200, 201, 202, 90, 134]

performs the global optimization search directly at the highest level of theory (usually DFT).

Because the latter is very time-consuming and can be applied only for relatively small clusters,

the former is the most employed one, despite being less accurate. In this approach, we may

identify three main steps: (i) calculation and fitting the PES; (ii) global optimization of the

cluster structure; (iii) re-optimization of the low-energy structures obtained in step (ii). To

obtain a reasonable level of accuracy, the PES needs to be fitted to a large set of ab initio

energies calculated with post-Hartree-Fock methods. Usually, the fitting procedure in step

(i) applies only for a small fragment of the cluster (in general, involving two- and three-body

interactions), which is then employed as the basic unit to build up the whole interaction. We

should emphasize that such a modeling process requires a non-linear fitting, which benefits

by the use of software recently developed by Rodŕıguez-Fernández et al. [21]. In turn, step

(ii) is conducted by employing state-of-the-art global optimization methods that have been

proposed in the literature over the last three decades [59, 92, 203, 204, 81, 82, 205, 95, 83, 84,

85, 206, 207, 208]. Our group has also developed evolutionary algorithms that have shown

good performance in discovering low-energy structures of both atomic [133, 16, 103, 105] and
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molecular [166] clusters. Finally, step (iii) is perhaps the most time-consuming, because the

re-optimization is carried out at a high-level of theory and, in general, for many structures

of each cluster size. Moreover, it is usual to observe a reordering of the energy minima from

the analytical PES after re-optimization.

From a theoretical perspective, the microsolvation of alkali-metal ions with rare-

gas atoms is appealing due to the electronic closed-shell character of these systems, which

facilitates the calculation of the cluster interaction energy. Over the years, different groups

have used those systems to study microsolvation on a theoretical basis [114, 119, 9, 209, 1, 18].

In particular, we have carried out global optimization studies [113, 146, 13, 19] on the Li+Arn,

Li+Krn and Li+ArmKrn clusters by employing potential energy surfaces that include up to

three-body interaction terms and an evolutionary algorithm developed in our group [103].

Such studies were complemented in some specific cases by performing post-optimization ab

initio calculations.

In this work, we focus on the post-optimization step and propose a methodology

to be applied in the study of microsolvation clusters involving alkali-metal ions and rare-gas

atoms. Having as reference MP2 and CCSD(T) calculations, one seeks for a DFT method that

would be both theoretically accurate and computationally competitive for the study of large

microsolvation clusters. In turn, we devise a strategy based on machine learning techniques

to select a promising set of low-energy structures from those obtained on an analytical PES

that will be, then, re-optimized at the DFT level of theory. The methodology is applied to

the microsolvation of Li+ by krypton atoms. Basically, it combines the information from

both the analytical PES and DFT re-optimization of small clusters to extrapolate for the

larger ones where the application of electronic-structure calculations are computationally

expensive. We suggest that one may reach such achievement through the application of

modern machine learning classification algorithms [210, 211, 212]. Special attention will be

given to the selection of the most effective features that allow for an accurate identification

of promising clusters.

The paper is organized as follows. We describe the methodology employed for the

present study in Section 6.2, while the main results are presented and discussed in Section 6.3.
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Finally, the conclusions are summarized in Section 6.4.

6.2 Methodology

The present methodology is described by the workflow represented in Figure 6.1.

First, we employ an analytical PES and an EA to obtain a large set of low-energy minima

for each size of the Li+Krn clusters. Second, we re-optimize the global minimum structure

of the smaller clusters at the MP2 level of theory by using aug-cc-pVQZ (or aug-cc-pVTZ)

basis set up to n = 6 (or n = 7 and 8). Third, we perform single-point energy calcula-

tions at CCSD(T)/aug-cc-pVQZ (MP2/aug-cc-pVQZ) [MP2/aug-cc-pVTZ] level of theory

for clusters up to n = 5 (n = 6) [n = 8]. The energies so obtained are taken as an accurate

reference for subsequent comparison with the DFT calculations, up to n = 8, by using several

combinations of functionals and basis sets. Fourth, a screening procedure is carried out to

benchmark the most competitive DFT approach to treat Li+Krn clusters in terms of accuracy

and computational time consumed. Fifth, we investigate how the low-energy minima of the

analytical PES connect to the corresponding ones obtained by local optimization with the

established benchmark DFT approach. Since this is a time-consuming procedure due to the

increasing number of local minima to be re-optimized, only small cluster sizes can be inves-

tigated. The main goal here is to investigate about the possibility of having an automatic

procedure to select the local minima that are most suitable for a DFT post-optimization, in

order to reach the the lowest-energy structure for each cluster size. Thus, the study is then

carried out for clusters up to n = 14 by employing the machine learning approach to get

insight about such purpose.

In the remaining of this section, we overview the analytical PES and the EA em-

ployed for the global optimization; the latter seeks for low-energy minimum structures de-

scribed by the analytical PES. Additionaly, the machine learning predictor is also presented

in the last part of current section.
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Figure 6.1: Diagram to include method DFT and Technique Machine Learning.

6.2.1 Analytical PES

The analytical PES employed in this work has been developed in our previous

work [13]. It is described by the expression:

V (R) =
∑
j

VLi+Kr(Rij) +
∑
j

∑
k>j

VKr2(Rjk) +

+
∑
j

∑
k

VLi+Kr2(Rij, Rik, Rjk) +
∑
j

∑
k

∑
m

VKr3(Rjk, Rkm, Rjm) (6.1)

where the summations run over all the two- and three-body contributions. We should men-

tion that VLi+Kr (VKr2) is a pair-potential, which depends only on the corresponding Li+-Kr

(Kr-Kr) distance. In turn, VLi+Kr2 terms describe the three-body contributions due to the

interaction between the dipoles on rare-gas atoms induced by the lithium ion and VKr3 is

replaced by the well-known Axilrod-Teller-Muto (ATM) long-range potential for Kr3. We



Chapter 6. Modeling microsolvation clusters with electronic-structure calculations guided
by analytical potentials and machine learning techniques 112

note that, in Eq. (6.1), the i-index is associated to the Li+ ion, while the indices j, k, and m

are used to label three distinct krypton atoms of a cluster system. The analytical functions

of both two- and three-body terms as well as the corresponding fitting parameters have been

presented in the original work[13] (see also Refs. [113, 146, 19]).

6.2.2 Global optimization method

We have employed a hybrid EA to obtain low-energy structures of the microsolvation

clusters modelled by the analytical PES represented by Eq. (6.1). The EA has been developed

in our group over the years [133, 155, 16, 103, 105] and, hence, only the main ingredients of

the method are described below; for further details about the EA and other alternative ap-

proaches, see the recent review [64]. The algorithm follows a steady-state approach, enhanced

with specific diversity measures aiming at postponing premature convergence. Each solution

is represented by the 3D Cartesian coordinates of the atoms that compose the cluster. A

minimum distance constraint is always enforced, preventing two atoms from getting too close

to each other. Initial solutions are randomly generated. Afterwards, a quasi-Newton local

optimization [63] method pushes every solution to the nearest local optimum. The energy at

the local minimum corresponds to the quality of the solution.

From the set of current solutions, the sequential application of tournament selec-

tion, heterogeneous cut and splice crossover and sigma mutation obtains a pool of descen-

dants [155, 103]. After local relaxation and evaluation, descendants replace old solutions,

providing that have lower potential energy and that no two similar clusters co-exist in the

solution pool. Structural dissimilarity between solutions is estimated with the center-of-mass

distance, one of the most effective measures used in structural geometry optimization [62].

The optimization cycle is repeated until a pre-determined number of evaluation is reached.

The most important setting of the EA used in this study are the following: number of runs:

30; population size: 100; evaluations: 1 000 000; tourney size: 5; crossover rate: 0.7; mutation

rate: 0.05; standard deviation for sigma mutation: 0.1.
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6.2.3 Machine learning predictor

In order to obtain the global DFT minimum, not all local optima discovered by the

EA need to be re-optimized at the DFT level of theory, as some of them will lead to clearly

suboptimal solutions. Given the high computational burden of a DFT optimization, it is

highly relevant to develop an automatic method that filters the solutions obtained by the

EA, thus passing to the next optimization level only the most promising structures.

We created a Machine Learning (ML) classifier [210] trained with a dataset of low-

energy PES local optima obtained by the EA, for clusters ranging between 7 and 14 Kr

atoms. All these instances from the dataset were reoptimized at the DFT level and labelled

according to the quality of the solution achieved after this step (i.e., at a higher level of

theory). They are considered either as promising, if the DFT method achieves a low energy

cluster, or as unpromising, otherwise. This last class comprises low energy local optima

obtained by the EA that should not be selected for reoptimization, as they do not lead to the

lowest-energy structures obtained after reoptimization at the DFT level. Our goal is then to

obtain a classifier that can accurately predict which local optima obtained by the EA should

be reoptimized. If a model can be used to estimate how promising an EA local optima is,

then the efficiency of the whole process can be highly enhanced, by reducing the time spent

reoptimizing non-promising solutions at the higher level of theory.

The dataset has the following structure: the labelled examples belong to two classes,

defined as promising versus unpromising clusters. Classification of the examples was per-

formed manually, as previously explained. Each instance is defined by the following 6 numeric

features: number of atoms, number of symmetry operations, hyperradius (ρ), deformation

indices (ξ− and ξ+), potential energy of the cluster as obtained by the EA and the single

point DFT energy at the EA geometry (ESP
DFT ). We should note that the first feature defines

the size of the cluster, while the second one is related to the point group of symmetry of the

structure. In turn, the characterization of the geometrical motif takes advantage of the next
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three features that can be calculated by using the expressions [213, 214]:

ρ2 =
I1 + I2 + I3

2MN

(6.2)

ξ+ =
I1 − I2
MNρ2

(6.3)

ξ− =
I3 − I2
MNρ2

(6.4)

where MN is the total mass of the cluster and I1, I2, and I3 are the principal moments of

inertia, that can be obtained by diagonalization of the corresponding tensor of inertia. In

these equations, one has assumed that I1 ≥ I2 ≥ I3, which leads to ξ− ≤ 0 and ξ+ ≥ 0.

It is worth noting that ρ represents a measure of the compactness of the cluster, and the

combined values of ξ− and ξ+ are an indication of the shape [213], which may be assigned as

one of the tops: spherical, prolate, oblate or asymmetric.

The dataset comprises 159 instances, in which 64 are classified as promising struc-

tures and 95 are unpromising. A random forest classifier was applied to the data [211]. No

special pre-processing steps were required, as the dataset does not contain any missing val-

ues and trees are scale-invariant, thus do not needing standardized data. As the classes are

imbalanced, a simple random oversampling method was applied to the training set. This

method creates a balanced set by random sampling the under-represented class.

The Python Scikit-learn package, version 0.20.3 [212] and the imbalanced learn

package [215] were used in all the ML tests. We applied grid search to optimize the parameters

of the random forest classifier and obtained the following settings: {forest size: 200; number

of features considered at each split: square root of the total number of features; maximum

depth of the tree: 5; minimum samples to split an internal node: 2; criterion: information

gain entropy}.
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6.3 Results and discussion

6.3.1 Low-energy structures of the analytical PES

As described in Section 6.2, the present methodology begins with a global opti-

mization search on the analytical potential energy of the cluster system. These are low-cost

structures that will be used as departing geometries for the post-optimization step at the

higher level of theory that is adopted in the proposed methodology. In general, the global

optimization study may be carried out by any method adequate for such purpose, including

the EA described in Section 6.2.2. In particular, we employ here the low-energy structures

of the Li+Krn (n = 1 − 14) clusters, as modeled with the PES described in Section 6.2.1,

that were obtained with the EA in our previous work [13]. Thus, we avoid an exhaustive

discussion about the structures obtained in the global optimization and the reader is ad-

dressed to the original work for details [13]. Nonetheless, it is important to emphasize that

the Li+Krn clusters close the first solvation shell at n = 6, whose global minimum structure is

octahedral. Due to the strong ion-krypton interaction in comparison to the krypton-krypton

one, the structure of the first solvation shell structure is maintained for large clusters. Con-

versely, the second solvation shell show a “fluid-like” behavior, with several energetically

similar low-lying structures [13].

6.3.2 Benchmarking the DFT approach

We have calculated the ground state energy of the Li+Krn (n = 1 − 5) clusters by

employing different methods. Initially, the global minimum structures of these clusters are

generated performing a MP2 optimization from the respective EA geometries. Specifically,

we have compared the CCSD(T)/aug-cc-pVQZ//MP2/aug-cc-pVQZ electronic energies cal-

culated using the GAMESS package [216] and several DFT results obtained by employing

the NWCHEM program [217] in the same geometries. The DFT calculations involve a com-

bination of the B3LYP [45], Slater-VWN5 (SVWN) [46], xperdew91 (PW91) [38], PBE0

(PBE) [40] and m08-HX (M08) [37] functionals, and cc-pVDZ [52, 56], aug-cc-pVDZ [52, 56],
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aug-pcseg-1 [218] and aug-pcseg-2 [218] basis sets. Additionally, the Grimme’s DFT-D3 [29]

dispersion correction is also employed for both B3LYP and PBE functionals, hereafter des-

ignated as B3LYP-D3 and PBE-D3, respectively.

For the comparison, we have considered an efficiency (η) measure, which is defined as

the product of two other quantities: (i) the mean-square deviation of electronic energies (σE)

between the values obtained by each functional/basis-set combination and the corresponding

CCSD(T) ones, and (ii) the computational time (CT) cost of the DFT calculations:

η = σE × CT (6.5)

The σE, CT and η values are shown in Table 6.1. In general, lower σE values are obtained

when the DFT-D3 correction is employed, while the smallest computational cost is for the

aug-pcseg-1 basis set.
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Figure 6.2: Graphic benchmarck DFT in relation the previous tabel. In comparation with

calculating ab initio aug-cc-pVQZ/CCSD-T and aug-cc-pVQZ/MP2, until 5 and 6 atoms.
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Table 6.1: Efficiency measure (η) of each combination of functional and basis set employed
in the DFT calculations of the Li+Krn (n = 1 − 5) clusters. Also represented are the two
components of η, i.e., σE and CT. See the text.

functional/basis-set label σE/mEh CT/s η/mEh s ranking

B3LYP/cc-pVDZ 135.7126 47.55 6453.13
B3LYP/aug-cc-pVDZ 252.9000 82.45 20851.60
B3LYP/aug-pcseg-1 234.0495 15.63 3657.02
B3LYP/aug-pcseg-2 82.9882 95.05 7888.02

PW91/cc-pVDZ 101.7733 49.85 5073.40
PW91/aug-cc-pVDZ 423.4874 126.03 53370.00
PW91/aug-pcseg-1 391.0059 14.40 5630.48
PW91/aug-pcseg-2 224.0767 95.48 21393.72

PBE/cc-pVDZ 126.8861 41.85 5310.18
PBE/aug-cc-pVDZ 122.1766 64.25 7849.85
PBE/aug-pcseg-1 Pbe1 102.5276 14.20 1455.89 8
PBE/aug-pcseg-2 Pbe2 14.9636 93.68 1401.72 7

SVWN/cc-pVDZ 265.2364 46.88 12432.96
SVWN/aug-cc-pVDZ 137.7678 78.58 10825.11
SVWN/aug-pcseg-1 Sap 133.3386 12.98 1730.07 9
SVWN/aug-pcseg-2 367.7625 86.20 31701.12

M08/cc-pVDZ 45.1738 58.35 2635.89
M08/aug-cc-pVDZ Mav 29.0926 61.30 1783.37 10
M08/aug-pcseg-1 Map 29.6841 12.93 383.67 4
M08/aug-pcseg-2 105.3890 100.48 10588.96

PBE-D3/cc-pVDZ GPbvdz 20.2180 41.25 833.99 6
PBE-D3/aug-cc-pVDZ 75.5964 66.38 5017.71
PBE-D3/aug-pcseg-1 GPb1 7.0031 13.40 93.84 2
PBE-D3/aug-pcseg-2 34.8064 89.78 3124.74

B3LYP-D3/cc-pVDZ GBvdz 9.6238 47.55 457.61 5
B3LYP-D3/aug-cc-pVDZ GBavdz 3.7078 83.10 308.12 3
B3LYP-D3/aug-pcseg-1 GBap1 1.7199 14.78 25.41 1
B3LYP-D3/aug-pcseg-2 47.6105 93.43 4448.01
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Considering the top-ten DFT approaches (i.e., those with the lowest values of η,

explicitly indicated in Table 6.1), we then recalculated the ground-state energy from struc-

tures obtained performing a DFT re-optimization. These results are displayed in Figure 6.2,

jointly with the corresponding MP2/aug-cc-pVQZ (and CCSD(T)/aug-cc-pVQZ) values for

Li+Krn aggregates up to n = 6 (n = 5). Although showing a small separation for n = 5, the

CCSD(T) and MP2 results follow essentially the same trend. Basically, this behavior may

be described by two straight lines: one extending up to n = 4, while the other, with a lower

slope, is apparent for n ≥ 4. In contrast to such behavior, some of the DFT results (Map,

Mav and Sap) follow a sole straight-line behavior up to n = 6; in particular, Sap performs

badly in comparison with the ab initio results, even for the smallest cluster sizes. Other DFT

results (Pbe1 and Pbe2) follow two straight lines as above mentioned for MP2 and CCSD(T),

but clearly fail to reproduce the ab initio results, especially for n ≥ 5.

It is also apparent from Figure 6.2 that the best five DFT results in comparison

to the ab initio energies occur when including the Grimme’s D3 dispersion correction in the

calculations (i.e., GBap1, GPb1, GBavdz, GBvdz and GPbvdz). In general, this observation

is in agreement with the ranking displayed in Table 6.1; due to a smaller value of the CT

parameter, however, Map results are ranked as 4 in Table 6.1, while GPbvdz that performs

much better in terms of energy appears in the sixth position. Accordingly, we have selected

GBap1, GPb1, GBavdz, GBvdz and GPbvdz to perform DFT calculations for n = 7 and

8. The corresponding DFT energies are represented in Figure 6.3 for Li+Krn, (n = 2 − 8)

clusters. In this figure, we also show the previous CCSD(T)/aug-cc-pVQZ and MP2/aug-cc-

pVQZ results for aggregates up to n = 5 and n = 6, respectively. Since we could not perform

MP2 calculations with a so large basis set for n > 6, we also carried out MP2/aug-cc-pVTZ

calculations for all aggregates up to n = 8. Such curve is also shown in Figure 6.3.

In this step we perform an analysis with Li+Krn, (n = 2− 8) clusters by evaluating

the mean-square deviation of electronic energies between these five DFT levels of theory and

the corresponding ab initio ones. Specifically, we considered as reference data the energies

calculated using CCSD(T)/aug-cc-pVQZ (up to n = 5), and MP2/aug-cc-pVQZ (n = 6) and

MP2/aug-cc-pVTZ (n = 7, 8).
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Figure 6.3: Graphic benchmarck DFT more refined in relation the previous graphic (Fig-

ure 6.2). In comparation with calculating ab initio aug-cc-pVQZ/CCSD-T and aug-cc-

pVTZ/MP2, until 5 and 8 atoms.

These σE are presented in Table 6.2 and they confirm that the B3LYP-D3/aug-

pcseg-1 level of theory presents a behavior more approximate with the CCSD(T) and MP2

ones. All subsequent DFT calculations were then performed with this combination of func-

tional and basis set. Note that in Table 6.2 the PBE-D3/aug-pcseg-1 and B3LYP-D3/aug-

pVDZ calculations had deviations close to B3LYP-D3/aug-pcseg-1 ones when are considered

Li+Krn aggregates up to n = 8, differently from what we have observed in Table 6.1, when

B3LYP-D3/aug-pcseg-1 level of theory presents clearly the lowest σE. This occurs mainly

due the MP2/aug-cc-pVTZ results, which are always larger than the ab initio results with

quadruple-zeta basis-set, being closer to PBE-D3/aug-pcseg-1 and B3LYP-D3/aug-pVDZ

ones.
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Table 6.2: Mean-square deviation of electronic energies (σE) between the values obtained by
each functional/basis-set combination and the corresponding CCSD(T)/aug-cc-pVQZ (up to
n = 5), MP2/aug-cc-pVQZ (n = 6) and MP2/aug-cc-pVTZ (n = 7, 8).

functional/basis-set σE/mEh

B3LYP-D3/aug-pcseg-1 7.8878

PBE-D3/aug-pcseg-1 8.1969

B3LYP-D3/aug-cc-pVDZ 8.1973

PBE-D3/cc-pVDZ 15.9535

B3LYP-D3/cc-pVDZ 81.1473

6.3.3 DFT optimization departing from the minima of the analyt-

ical PES

By employing the DFT method with B3LYP-D3/aug-pcseg-1 (the best approach

selected in the previous subsection), we have performed re-optimization of the global and

local minima obtained with the EA for the Li+Krn (n = 7− 14) clusters; local minima with

up to 3.0 mEh above the global minimum have been selected for re-optimization. We should

emphasize that the process of DFT re-optimization was carried out as follows: first, it is

performed an optimization by using the default parameters of NWCHEM software; second,

it is performed another minimization by employing thinner optimization-step parameters;

then the energies of both optimizations are compared and, if the difference is greater than

0.1 mEh, we perform another optimization with even thinner parameters. The DFT result

considered is the energy obtained in the last optimization performed.

In Figure 6.4 we display the comparison between the optimized EA and re-optimized

DFT energies (from the global ones), indicating the connection between them. We can ob-

serve in this figure that not always the global minimum obtained in the DFT re-optimization

corresponds to the global minimum of the EA method. We can mention, for example, the



Chapter 6. Modeling microsolvation clusters with electronic-structure calculations guided
by analytical potentials and machine learning techniques 121

case of aggregate Li+Kr10, when the DFT global minimum is obtained from an EA local

minimum located about 2 mEh above of the EA global minimum, whereas the EA global

minimum generates a DFT minimum with energy about 0.8 mEh greater then the global

DFT minimum.

To try to understand if there is any characteristic in the (global and local) EA min-

ima that indicates which are the most likely to generate the global DFT minimum structure

(after the re-optimization step), we have calculated some quantities of interest from each

EA structure: the symmetry group, hyperradius and deformation indices, and the potential

energy given by the analytical PES. These results are summarized in Table A.1 of Appendix,

and an example of EA and structures of all minima considered for the Li+Kr7 is shown in

Figure 6.5. In this figure, it is also shown also the EA and DFT energies in relation to

the corresponding ground state. We can see that three different EA structures (with energy

differences up to 2.9 mEh) go into the minimum energy structure after DFT re-optimization

(within optimization accuracy).

Analyzing the results in Table of the Apendix and Figure 6.5, we can hardly identify

a simple pattern among the various quantities indicating whether a minimum (global or

local) from the analytical PES will lead to the lowest-energy structure after the DFT post-

optimization. In the next subsection, we have employed a modern ML approach to get any

insight about this issue.
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Figure 6.4: Comparation between optimization by GA and Post-optimization DFT.
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Figure 6.5: Structures of the Li+Kr7 minima obtained with the EA. Also indicated are

the corresponding symmetry and energy in the analytical PES (second column) and the

DFT energy in relation to the global minimum (third column). Other parameters used as

geometrical descriptors in the ML method are also given in the second column. Energies are

in mEh.

6.3.4 Training and validation of the ML classifier

A 4-fold cross validation model [210] was applied to access the effectiveness of the

model. The global predictive accuracy obtained is around 61% and the detailed confusion

matrix can be consulted in Figure 6.6.
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Figure 6.6: Confusion matrix obtained with the basic 6 features. The classes U and P

represent, respectively, (U)npromising and (P)romising clusters.

Results reveal that there is a balanced classification of the two classes, but the

accuracy is not impressive, as it misses the correct identification in approximately 4 out of

each 10 clusters. As it stands, this simple model is still quite error-prone on the detection

of promising geometries to optimize at the DFT level. Particularly undesirable is the rate

of false negatives which is above 40%, as it corresponds to promising structures that are

wrongly classified by the model.

Aiming at enhancing the predictive accuracy of the classifier, we added several new

features that might help to describe important properties of the clusters. It is well-known

that geometric characteristics of aggregates, as determined by local arrangements of particles,

can impact the quality of clusters [16]. Therefore this information might help the classifier to

enhance its effectiveness. For this study we consider the local connectivity information [219].

This measure creates a table with detailed information of how many connections each atom
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has. Two atoms are connected if they stand at distance smaller than a given threshold. For

the clusters on this study we consider a minimum distance of 8.0 a0 and a maximum of 12

neighbors, leading to the addition of 12 descriptors.

The modified dataset has now 18 features to describe the 159 instances. We applied

the classifier previously presented (with the same settings) and it achieved a global predictive

accuracy of 65%. The detailed confusion matrix is presented in Figure 6.7. Results displayed

in the matrix confirm that the geometric information of the clusters is relevant to predict how

promising the structure is. The correct classifications increase in both classes, most notably

in the class of unpromising clusters that raises to 67% of correct predictions. On the negative

side, the rate of false negatives is 39%. This value is still too high, as the model will fail to

highlight many promising clusters for DFT reoptimization.

To further enhance the classification accuracy of the ML model, we added an ad-

ditional feature. The methodology proposed in this work comprises two sequential steps, in

which promising clusters discovered by the EA are re-optimized at a DFT higher level of

theory. This second step is an iterative process: first, local optima discovered by the EA are

mapped to the DFT landscape and then the iterative DFT optimization proceeds. Accord-

ingly, we take the first value obtained at the DFT level and use it as an additional feature.

Note that this does not imply a high computational overhead, as only one DFT evaluation

is performed. Before application, this feature was engineered in the following way: for each

cluster size (between 7 and 14), we determined the minimum DFT value. Then, the value

for each engineered feature was obtained by subtracting the corresponding minimum from

the original DFT quantity for that feature.

The final dataset has now 19 features to describe the 159 instances. We applied the

classifier previously presented (with the same settings) and it achieved a global predictive

accuracy of 69%. The detailed confusion matrix is presented in Figure 6.8. There is a

noteworthy increase in the classification accuracy of the promising clusters and the rate of

false negatives drops to 30%. This confirms that the first energy obtained at the DFT level of

theory is relevant and it provides an essential contribute to discriminate between promising

and unpromising clusters.
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Figure 6.7: Confusion matrix obtained with the extended 18 features. The classes U and P

represent, respectively, (U)npromising and (P)romising clusters.

To confirm that the new feature is indeed enhancing the predictive accuracy of the

ML model we estimated the mutual information between each feature and the target. This

measure is calculated using a nonparametric entropy estimation method based on the k-

nearest neighbour approach and it estimates the dependency between each feature and the

target [220]. It is 0 if the two variables are independent, whilst higher values correspond to

higher dependencies. Values obtained are low (always below 0.14), confirming that single

features are unable to accurately estimate the target. In any case, higher values are obtained

by the features encoding the first DFT energy and the energy obtained by the EA. Even

though weaker than the 2 previous features, a few connectivity values (namely, 3, 6, and 7

neighbors) also achieve a reasonable correlation with the target.
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Figure 6.8: Confusion matrix obtained with the extended 19 features. The classes U and P

represent, respectively, (U)npromising and (P)romising clusters.

6.4 Conclusions

We have devised a strategy based on ML techniques to reduce the computational

burden related to the re-optimization at a high theoretical level of structures modeled by an

analytical PES. The methodology relies on the re-optimization at the DFT level of theory

and it has been applied to clusters resulting from the microsolvation of Li+ by krypton

atoms. The choice of the DFT approach resorted to a benchmark process involving several

combinations of functionals and basis-sets, some of them including D3 dispersion corrections.

By considering Li+Krn clusters up to n = 8, we found out that B3LYP-D3/aug-pcseg-1 is

the best choice when considering the computational time and the comparison with MP2 (or

CCSD(T), for the smaller clusters) energies. The DFT/B3LYP-D3/aug-pcseg-1 method was
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employed to re-optimize all the low-energy minima of the Li+Krn (n = 2− 14), which were,

then, used to test the ML classifier.

The ML classifier proposed in this work is effective in identifying promising struc-

tures for DFT reoptimization. The feature set comprising geometrical information and first

DFT energetics was able to accurately detect the best local optima that were obtained by the

analytical potential. This is a relevant result, as it promotes a massive efficiency enhance-

ment in the DFT optimization step. Current results show that the ML model is accurate

to detect promising clusters with the same size as those used in training. Our next research

step will address a generalization that allows for the accurate detection of promising clusters

with a higher number of particles.

SUPPORTING INFORMATION

The Supporting Information is available in Apendix.



Chapter 7

Conclusion and Remarks

In this thesi we have related a review of the tools developed for the construct and

study of clusters. We begin the study on the development of EAs for searching low-energy

structures of atomic clusters with the two-bodys potential. It were alkali-ion (Li, Na and K)

microsolvation with argon, where the results show that strong “magic numbers” are asso-

ciated with the closure of the first solvation and the global minimum structures for K+Arn

clusters are, in general, the most symsetric ones. For discovering global minimum struc-

tures of Rh-Cu transiton-metal clusters, the global minimum structures present segregation

of Cu atoms on the surface of the aggregates, presenting compatibility with the experimen-

tal cohesion energies. And the self-adaptation show that is a promising avenue for future

research.

In a second moment we perfom a comparision study of low-energy landscape of

the clusters resulting from the microsolvation of Li+Arn and Li+Krn for clusters with up

to 14 rare-gas atoms and that include either two and three-body interactions. Where the

Li+Arn low-lying minima tend to be concentrated in a narrow energy window close to the

corresponding global minimum, whereas the Li+Krn ones are in larger number and spread

out over the energy range. We perform also a analysis of the local minima in the first and

second solvation shell. A other curiosity in this study is the fact of the structures contain

rare-gas atoms in the second solvation shell with the ion essentially in the center in PES II

and off-center in PES I. The stability of such type of structures results from a subtle balance

129
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between the interaction involving the second-shell atoms alone and that from the inter-shell

species energy contribution. But in this stage confirmed that the incorporation of three-body

terms in the PES is essential to reproduce the main structural motifs.

With the goal of discover the binary-solvent clusters most stable, it were proposed

perform a study of solvent-binary of the Li+ArnKrm, and as answer, we obtain six krypton

atoms occupied the first and second sovatation shell. Indeed, the microsolvation of the ion

leads to formation of clusters, where distinct argon and krypton subclusters are apparent.

For last, to guide the choice of the most promising low-energy minima of Li+Krn(n

= 2 - 14) to be optimized at the DFT level of theory, it was proposed this work the Machine

Learning classifer. The results show that the Machine Learing model is accurate to detect

promising clusters with the same size as those used in training. The next step is analyse

parameters that will contribute for allows an accurate detection of promising clusters with a

higher number of particles.

Future prospects in this research involves performing a study of building molecular

clusters. Until now we have only investigated the atoms clusters, since we are interested

in performing a study of clusters of atomic ions by carbon gas molecules and heterocyclic

organic molecules. We aim to analyze the thermodynamic properties using a code developed

in our research group. To obtain better results we will optimize the use of Machine Learning

technique. Moreover, to obtain better results in the fitting of two and three-bodies interation

potential functions, where will be built potential functions that allow it to consider possible

contributions of the four or five bodies.
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Appendix A

Table of parameters

Table of parameters used in Machine Learning. Energy(EA) and E. DFT are in mEh. And
E. First is the energy first obtained by DFT optimization, in Eh.

Min Oper. Sym. Energy(EA) ρ2 ξ+ ξ− E. DFT E. First

N=7

0 6 -0.055239 34.05 5.19E-07 -3.15E-01 0.010100 -19281.683591

1 2 -0.054882 36.21 2.22E-03 -3.54E-01 0.839012 -19281.682855

2 8 -0.054388 42.49 2.19E-06 -4.48E-01 1.734086 -19281.681994

3 4 -0.052999 34.11 1.91E-01 -1.44E-01 0.156677 -19281.679778

4 2 -0.052782 38.32 8.00E-03 -4.14E-01 0.020084 -19281.678141

5 4 -0.052663 38.43 2.55E-03 -4.23E-01 4.812058 -19281.678594

6 2 -0.052365 39.51 4.95E-02 -3.86E-01 6.012252 -19281.677257

8 2 -0.052301 44.04 6.26E-02 -5.66E-01 0.000000 -19281.677529

Min Oper. Sym. Energy(EA) ρ2 ξ+ ξ− E. DFT E. First

N=8

0 2 -0.057515 39.32 9.31E-02 -2.98E-01 0.001289 -22035.163414

1 4 -0.057419 38.50 1.76E-01 -1.18E-01 0.000000 -22035.163674
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2 4 -0.057410 38.70 1.02E-01 -2.66E-01 0.003185 -22035.163515

3 12 -0.057371 42.30 5.04E-07 -5.19E-01 1.775595 -22035.163467

4 4 -0.057370 40.43 1.37E-01 -2.22E-01 1.747003 -22035.163501

5 2 -0.057195 40.84 8.90E-02 -3.24E-01 2.577242 -22035.162668

6 2 -0.057080 43.54 6.71E-02 -3.96E-01 2.793591 -22035.162488

7 1 -0.057073 42.94 7.08E-02 -3.83E-01 0.001164 -22035.162482

8 1 -0.057019 41.48 2.10E-01 -8.80E-02 2.502404 -22035.162767

9 2 -0.057017 43.91 4.07E-02 -4.57E-01 2.474407 -22035.162714

10 1 -0.056530 49.22 8.84E-02 -4.07E-01 3.462294 -22035.161825

11 2 -0.055372 39.92 2.56E-01 -1.05E-01 0.024429 -22035.159147

12 2 -0.055339 40.49 8.31E-02 -3.06E-01 1.942022 -22035.159160

Min Oper. Sym. Energy(EA) ρ2 ξ+ ξ− E. DFT E. First

N=9

0 6 -0.059983 43.61 9.19E-07 -3.65E-01 2.294202 -24788.643088

1 1 -0.059890 45.65 1.76E-02 -4.04E-01 0.603371 -24788.642920

2 1 -0.059813 43.75 2.09E-01 -1.42E-01 0.000131 -24788.643188

3 2 -0.059793 43.51 1.73E-01 -1.50E-01 0.000000 -24788.643195

4 2 -0.059792 44.41 1.16E-01 -2.93E-01 2.010347 -24788.643207

5 2 -0.059787 45.25 2.69E-02 -3.90E-01 0.603813 -24788.643003

6 4 -0.059730 43.68 2.10E-01 -1.70E-01 2.242815 -24788.643066

7 1 -0.059691 43.39 1.92E-01 -1.26E-01 0.211421 -24788.643276

8 1 -0.059684 43.45 1.81E-01 -9.94E-02 1.549979 -24788.643520

9 1 -0.059638 44.48 1.56E-01 -1.59E-01 0.211224 -24788.643363

10 2 -0.059633 47.92 8.46E-02 -4.55E-01 1.705346 -24788.643298

11 2 -0.059633 46.94 1.16E-01 -3.85E-01 1.705043 -24788.643248

12 2 -0.059587 47.21 1.16E-02 -4.21E-01 3.264154 -24788.642184

13 2 -0.059577 43.14 1.52E-01 -7.69E-02 1.403675 -24788.643708

14 2 -0.059532 46.13 1.48E-01 -3.11E-01 1.714972 -24788.643552
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15 6 -0.059482 46.15 2.33E-01 -1.80E-06 1.962000 -24788.643411

16 2 -0.059357 47.71 2.41E-01 -1.39E-01 1.217279 -24788.642273

17 2 -0.059222 47.66 2.36E-01 -1.47E-01 2.937057 -24788.642402

18 2 -0.059205 52.37 6.91E-02 -5.15E-01 3.132715 -24788.642255

19 1 -0.059203 50.23 5.71E-02 -3.97E-01 3.060980 -24788.642342

20 1 -0.058073 43.73 1.59E-01 -2.23E-01 1.611102 -24788.639346

21 1 -0.058012 45.67 1.41E-01 -2.86E-01 1.579006 -24788.638208

22 2 -0.057958 44.02 1.58E-01 -1.87E-01 0.010810 -24788.638399

23 1 -0.057917 43.16 2.20E-01 -1.24E-01 1.669842 -24788.640195

24 1 -0.057766 45.35 1.61E-01 -2.40E-01 0.603498 -24788.638708

25 1 -0.057691 45.03 2.18E-01 -7.43E-02 1.406398 -24788.638853

27 1 -0.057646 45.83 2.18E-01 -6.63E-02 2.526725 -24788.638769

28 2 -0.057603 45.20 1.46E-01 -1.08E-01 2.353670 -24788.639035

Min Oper. Sym. Energy(EA) ρ2 ξ+ ξ− E. DFT E. First

N=10

0 2 -0.062692 47.65 1.12E-01 -2.83E-01 0.788837 -27542.123417

1 4 -0.062682 47.73 6.83E-02 -3.43E-01 0.825916 -27542.123413

2 2 -0.062594 46.36 1.53E-01 -1.58E-01 0.593658 -27542.123611

3 2 -0.062413 47.07 2.59E-01 -8.12E-03 0.454166 -27542.123697

4 2 -0.062383 49.17 1.05E-01 -2.81E-01 1.713518 -27542.122618

5 2 -0.062279 50.44 1.02E-01 -2.95E-01 1.739629 -27542.122478

6 1 -0.062187 49.34 1.77E-01 -1.76E-01 1.537975 -27542.122677

7 1 -0.062168 49.36 1.60E-01 -1.82E-01 1.168878 -27542.122785

8 2 -0.062094 49.60 1.05E-01 -2.89E-01 1.302600 -27542.123056

9 6 -0.062094 53.21 5.83E-07 -5.32E-01 1.423041 -27542.122942

10 1 -0.061994 54.60 2.46E-03 -5.38E-01 2.062690 -27542.122021

11 4 -0.061885 54.78 1.07E-01 -4.92E-01 0.975133 -27542.123057

12 1 -0.061784 50.76 1.13E-01 -3.23E-01 0.259062 -27542.123447
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13 2 -0.061698 49.96 7.91E-03 -3.10E-01 1.954582 -27542.122305

14 1 -0.061650 52.70 2.50E-01 -1.52E-01 2.172992 -27542.122449

15 2 -0.061485 53.06 2.96E-01 -1.03E-01 1.713553 -27542.122255

16 2 -0.061374 54.27 1.87E-01 -3.24E-01 1.703321 -27542.122517

17 2 -0.060699 47.75 1.34E-01 -1.80E-01 0.000000 -27542.119017

18 2 -0.060548 46.88 2.48E-01 -3.27E-03 4.438359 -27542.119422

19 1 -0.060451 49.00 2.02E-01 -1.46E-01 1.065697 -27542.118824

20 1 -0.060220 50.04 1.47E-01 -2.90E-01 1.065977 -27542.118550

21 1 -0.060033 51.90 1.29E-01 -2.66E-01 1.280031 -27542.117118

Min Oper. Sym. Energy(EA) ρ2 ξ+ ξ− E. DFT E. First

N=11

0 2 -0.065188 49.36 1.56E-01 -5.04E-02 0.852905 -30295.604167

1 1 -0.065173 50.21 1.24E-01 -1.99E-01 1.856407 -30295.603310

2 1 -0.065097 50.94 9.57E-02 -2.30E-01 1.809134 -30295.603229

3 1 -0.065080 52.43 1.59E-01 -1.69E-01 2.116458 -30295.602923

4 1 -0.065077 51.20 1.20E-01 -2.24E-01 1.912930 -30295.603209

5 1 -0.065074 50.27 1.49E-01 -1.52E-01 1.609036 -30295.603480

6 1 -0.065041 50.16 1.20E-01 -1.83E-01 1.678947 -30295.603341

7 1 -0.065036 50.36 1.83E-01 -1.37E-01 1.460625 -30295.603615

8 2 -0.065012 51.46 1.20E-01 -2.45E-01 2.232196 -30295.602946

9 1 -0.065008 51.36 1.24E-01 -2.33E-01 2.234682 -30295.602957

11 1 -0.064816 55.38 9.55E-02 -4.00E-01 2.524715 -30295.602537

13 2 -0.064688 53.05 1.91E-01 -1.92E-01 1.615972 -30295.603598

14 2 -0.064550 53.97 2.02E-01 -6.90E-02 2.679298 -30295.602383

15 2 -0.064500 54.48 2.06E-01 -2.04E-01 1.571840 -30295.603691

16 2 -0.064315 52.41 1.20E-01 -3.63E-02 1.986634 -30295.602994

18 1 -0.064176 52.36 2.39E-02 -1.60E-01 1.906555 -30295.603133

20 1 -0.063873 60.42 8.96E-02 -3.21E-01 3.367624 -30295.601795
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21 1 -0.063606 48.92 1.74E-01 -7.34E-02 0.955061 -30295.600443

23 1 -0.063264 51.54 1.69E-01 -8.88E-02 0.000000 -30295.599162

24 2 -0.063195 52.37 2.07E-01 -1.04E-01 1.080317 -30295.599025

25 2 -0.063049 50.56 1.69E-01 -1.73E-02 0.118584 -30295.598557

26 1 -0.062896 53.45 1.60E-01 -2.66E-01 0.146338 -30295.597675

27 2 -0.062554 55.92 4.17E-02 -9.13E-02 8.204090 -30295.596699

Min Oper. Sym. Energy(EA) ρ2 ξ+ ξ− E. DFT E. First

N=12

0 2 -0.068011 53.02 1.17E-02 -2.49E-01 1.746926 -33049.083773

1 1 -0.067897 53.43 1.65E-01 -1.46E-01 1.461569 -33049.083984

2 2 -0.067872 54.14 1.23E-01 -1.06E-01 0.000000 -33049.083520

3 2 -0.067853 52.29 1.77E-02 -2.23E-01 0.592425 -33049.083832

4 1 -0.067844 53.40 2.31E-01 -2.88E-02 1.573507 -33049.083930

5 2 -0.067813 53.50 1.90E-01 -1.09E-01 1.621839 -33049.083978

6 1 -0.067763 52.38 5.61E-02 -1.30E-01 1.432103 -33049.084058

7 2 -0.067763 52.40 6.12E-02 -1.24E-01 1.386949 -33049.084212

8 6 -0.067762 52.40 1.24E-05 -4.44E-02 0.705481 -33049.084825

9 1 -0.067752 52.89 1.16E-01 -1.27E-01 1.369925 -33049.084035

10 1 -0.067617 55.47 2.56E-01 -1.92E-02 0.764734 -33049.083077

11 1 -0.067493 56.00 1.02E-01 -3.05E-01 2.891435 -33049.082785

12 2 -0.067287 56.91 1.24E-01 -2.44E-01 2.206907 -33049.083364

13 1 -0.067199 59.02 9.07E-02 -3.57E-01 3.153291 -33049.082338

14 1 -0.067044 60.41 1.30E-01 -3.40E-01 1.760021 -33049.082448

15 1 -0.066977 55.49 6.34E-02 -1.43E-01 2.487384 -33049.082885

16 2 -0.066876 65.25 1.02E-01 -4.80E-01 3.321041 -33049.082371

18 2 -0.066663 62.82 6.28E-02 -4.23E-01 3.091813 -33049.082412

19 1 -0.066533 50.54 1.00E-01 -4.67E-02 3.107956 -33049.082412

20 2 -0.066138 54.48 4.59E-02 -6.37E-02 0.472771 -33049.078556
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22 4 -0.065977 53.53 1.05E-02 -2.49E-02 1.288849 -33049.078766

23 1 -0.065416 54.83 9.13E-02 -1.94E-01 1.637127 -33049.080836

Min Oper. Sym. Energy(EA) ρ2 ξ+ ξ− E. DFT E. First

N=13

0 2 -0.071183 54.10 8.66E-02 -1.37E-01 0.000000 -35802.565254

1 6 -0.070765 56.84 1.09E-05 -1.19E-01 1.446655 -35802.563707

2 2 -0.070639 57.27 2.47E-01 -1.29E-02 1.112691 -35802.564121

3 1 -0.070632 54.94 1.52E-01 -7.78E-02 0.157119 -35802.564755

4 2 -0.070607 54.86 1.52E-01 -8.08E-02 0.101550 -35802.564751

5 2 -0.070588 55.56 5.85E-02 -9.79E-02 0.826453 -35802.564479

6 2 -0.070566 58.01 1.56E-01 -2.30E-01 1.444054 -35802.563917

7 1 -0.070545 56.29 1.82E-01 -3.54E-02 1.363202 -35802.564042

8 2 -0.070526 54.02 2.68E-02 -7.12E-02 0.136745 -35802.565070

9 4 -0.070471 53.80 7.84E-02 -6.29E-02 0.495371 -35802.564676

11 1 -0.070279 58.92 2.47E-01 -3.93E-02 0.335665 -35802.563564

12 1 -0.070148 58.72 1.10E-01 -1.27E-01 1.773203 -35802.563436

14 1 -0.069981 59.69 1.33E-01 -2.60E-01 1.143799 -35802.563790

15 1 -0.069879 60.84 1.49E-01 -2.64E-01 2.133464 -35802.563044

16 1 -0.069716 58.82 8.07E-02 -1.95E-01 0.964231 -35802.564174

18 2 -0.069584 60.56 1.61E-02 -1.62E-01 2.541237 -35802.562727

19 1 -0.069418 66.20 8.38E-02 -4.17E-01 2.223576 -35802.562932

21 4 -0.069297 64.35 1.37E-01 -3.32E-01 2.006718 -35802.561746

22 1 -0.068944 62.54 9.44E-02 -2.17E-01 3.067354 -35802.562303

23 1 -0.068856 60.15 4.99E-02 -1.59E-01 0.738364 -35802.563909

24 2 -0.068641 58.27 1.59E-01 -3.13E-02 0.962929 -35802.559207

25 1 -0.068596 66.20 1.90E-01 -2.48E-01 2.474741 -35802.562638
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Min Oper. Sym. Energy(EA) ρ2 ξ+ ξ− E. DFT E. First

N=14

0 1 -0.074087 55.42 7.02E-02 -1.02E-01 0.553471 -38556.046371

1 4 -0.074016 55.60 6.91E-02 -6.08E-02 0.925911 -38556.046306

2 1 -0.073563 59.37 1.66E-01 -2.78E-02 2.478019 -38556.044830

3 2 -0.073547 56.01 2.50E-03 -1.16E-01 1.232636 -38556.045880

4 1 -0.073446 57.22 5.53E-02 -5.33E-02 1.800972 -38556.045398

5 1 -0.073441 58.88 1.05E-01 -1.85E-01 2.383094 -38556.044887

6 8 -0.073440 56.06 3.08E-06 -1.17E-01 1.196044 -38556.045753

7 2 -0.073426 59.13 1.42E-01 -1.32E-01 2.149698 -38556.045649

8 2 -0.073412 59.97 1.34E-01 -1.56E-01 0.000000 -38556.045012

9 1 -0.073377 58.55 1.07E-01 -3.82E-02 2.990700 -38556.044377

10 2 -0.073214 59.25 1.51E-01 -1.88E-02 2.991847 -38556.044355

12 2 -0.073097 63.54 1.27E-01 -2.56E-01 2.500665 -38556.043055

13 2 -0.072978 59.90 1.44E-01 -1.50E-01 2.722543 -38556.044651

14 1 -0.072883 65.93 8.10E-02 -3.79E-01 2.824549 -38556.042582

15 1 -0.072792 65.22 3.00E-02 -3.95E-01 4.592459 -38556.042777

16 1 -0.072697 61.72 1.21E-01 -2.10E-01 2.028528 -38556.044732

17 1 -0.072425 66.19 2.02E-01 -2.27E-01 3.343386 -38556.043517

19 1 -0.072283 67.47 1.88E-01 -2.67E-01 2.559150 -38556.042812

20 1 -0.072191 70.40 9.53E-02 -3.56E-01 5.037569 -38556.042440

21 1 -0.072004 70.04 6.86E-02 -4.54E-01 3.953463 -38556.041401

22 1 -0.071821 67.15 3.20E-02 -3.67E-01 2.195139 -38556.042678

23 1 -0.071752 65.87 2.22E-01 -1.31E-01 2.968349 -38556.044146

24 1 -0.071639 60.01 1.16E-01 -1.57E-01 2.371281 -38556.040646


