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Abstract

By Fourier transform we generate correlated random surfaces that was used as a tool to study

two different fields, statistical physics in terms of the Schramm/Stochastic Loewner Evolution

(SLE) and Cold Field Electron Emission (CFE). We have shown that critical exponents of

percolating systems are not affected by the form of the distribution of the Fourier coefficient and

phase and Fourier phase correlations. Our results of extensive numerical SLE test, indicate that

the full perimeters of percolating clusters of correlated surfaces, with negative Hurst exponent,

are statistically equivalent, in the scaling limit, to SLE curves. From the perspective of CFE, a

more general criterion for detecting and interpreting nonorthodox field emission is proposed and

can be applied to any distribution of local field enhancement factors in conducting large-area

field emitters (LAFEs). We show that morphology changes on LAFEs can lead to saturation

of the Fowler-Nordheim (FN) plot. Finally, we emphasize that the linear behavior of the FN

plot does not guarantee that the emission phenomenon is orthodox.
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Resumo

Através da transformada de Fourier nós geramos superf́ıcies aleatórias correlacionadas que

foram utilizadas para estudarmos dois diferentes campos da F́ısica, F́ısica Estat́ıstica no âmbito

da evolução de Schramm-Loewner (SLE) e emissão de elétrons por efeito campo elétrico (CFE).

Primeiro verificamos que expoentes cŕıticos de sistemas de percolação em surperf́ıcies correla-

cionadas não apresentaram dependência com as distribuições dos coeficientes e fase de Fourier,

bem como devido a correlações na fase. Nossos resultados, após extensivos testes numéricos

de SLE, indicaram que o peŕımetro completo do aglomerado de percolação de sistemas cor-

relacionados, com expoente de Hurst negativo, são estatisticamente equivalentes, no limite de

escala, a curvas SLE. Na perspectiva de CFE, propomos um critério mais geral para detec-

tar e interpretar emissões não-ortodoxas, o qual pode ser aplicado para qualquer distribuição

de fatores de amplificação em emissores de ampla area de emissão (LAFEs). Mostramos que

mudanças morfológicas em LAFEs podem levar à saturação no gráfico de Fowler-Nordheim

(FN). Por fim, enfatizamos que um comportamento linear do gráfico de FN não garante que o

fenômeno de emissão é ortodoxo.
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Chapter 1

Introduction

Irregular random surfaces are explored in several branches of physics. The sea surface temper-

ature patterns, natural landscapes, 2D turbulence systems, rough thin films, and also possible

emitter devices[1–10] can be mapped onto random surfaces characterized by the Hurst exponent,

H. This exponent is associated to the height-height spatial correlation between two sites/points

on the surface. Given this broad scope, we have analyzed here aspects of the random surfaces

according to two distinct frameworks, namely from the point of view of statistical physics and

cold field electron emission (CFE).

Similarly to statistical physics models, which can be classified into universality classes based on

their critical exponents, two-dimension fractal curves may be classified into universality classes

based on their geometrical properties. In this case, a well known of those critical exponents

is the fractal dimension of such curves itself. Here, together with other critical exponents, the

fractal dimension shows a clear dependence on Hurst exponent. However, the fractal dimension

of curves from different physical systems have shown to be equal [5, 6] and, therefore, indicates

the need to find a more fundamental property. The important step to clarify this issue was

provided by Oded Schramm, who published the theory of Stochastic Loewner ou Schramm-

Loewner, Evolution (SLE) [11]. A SLE theory gives insights into the statistical distribution of

the curves and, moreover it allows to describe curves belonging to different universality classes

by the same process: a one-dimensional Brownian motion. It means that curves statistically

1



2 Chapter 1. Introduction

equivalent to the ones generated by expensive computational calculation as random gaussian

surfaces[12], optimization process like watershed[13], shortest path[14], or from solving complex

partial equation like in turbulence[5, 4], might be simulated with less computational time. The

SLE theory was an astounding success, not only rigorously reproducing previously established

results, but also answering long standing unsolved problems, like Mandelbrots conjecture for

the boundary of a 2D Brownian motion[15]. Also, for the first time, physicists have a rigorous

mathematical tool, they can check their predictions in the framework of statistical physics of

interfaces. Therefore, in the first part of this thesis, we have used such a powerful description

to investigate if such correlated random surfaces may also follow the SLE statistical properties.

The large applicability of random surfaces in modeling physical systems also includes the rep-

resentation of emitter surfaces. For that, each site/point of the random surface can be a rep-

resentation of a single emitter. An example of single-tip field emitter is the carbon nanotubes

(CNTs). Such arrange of many single emitters configure a large-area field emitter (LAFEs). In

many of the cases, each emitter is represented by its local field enhancement factor (FEF) [16],

which represents how much the local field is higher, as compared to the external electric field.

The FEF is a source of intense research as in the scope of the morphology of the emitter[17-25],

as well as extracting from current voltage characteristic curves[26-29].

Cold field electron emission corresponds to a statistical electron-emission regime in which a

macroscopic current is emitted when electrons escape from states close in energy to the Fermi

level by a Fowler-Nordheim (FN) tunneling. Recently, the interest in developing electron

sources, based on CFE, from relatively large substrate areas that support many individual

emitters (or sites) has increased [30, 31, 32, 33]. For instance, field emission measurements un-

der typical conditions over large areas (e.g., on a flat panel display) confirmed that CNT’s

films have good emission properties when an onset macroscopic field of a few V/µm was

applied[34, 35, 36, 37]. Applications of particular interest are the electron sources in high

power microwave vacuum devices [38] or x-ray generators [39]. Examples of reported field

emission cathodes for x-ray sources include silicon [40] and CNT emitter arrays[41]. Recently,

it has been shown that fluctuations related to statistical distribution of CNT heights may result,

with the increasing of the applied voltage, in new luminous spots on the fluorescent screen[42].



3

However, all those important applications of LAFEs contrast with its not well established

theoretical characterization.

We have concentrated ourselves studying LAFEs that show dependence of area emission on

the applied field and also a possible degradation process of the emitters. Such considerations

were taken into account in order to analyze a more realist physical system. As a consequence,

we have proposed a more general criterion for detecting and interpreting these phenomena,

since most the explanations for large-area emitters are still extensions from single tip emitters

without any correction factor associated to LAFE’s characteristics.

This Thesis is organized as follows.

Chapter 2 describes the method used to generate random surfaces, the Fourier filtering method.

A quantitative scale analyses of the influence of the different distributions of the Fourier coef-

ficients and phases over the surface generated is discussed. It is presented numerical evidences

on the conjectures of the dependence on Hurst exponent of several critical exponents such as

the fractal dimension of the percolating clusters and its perimeters, correlation length. We also

have verified the consequences of Fourier phases correlation.

In the Chapter 3 we introduce the SLE Theory by explaining conformal invariance, the Riemann

mapping theorem, the Loewner equation, Schramm’s contributions, and finally describe the

numerical SLE test. In sequence, we study isoheight lines extracted from correlated surfaces in

the framework of SLE. More precisely, we have accomplished a direct numerical SLE test, as

well as a Markovian test for such two-dimensional curves.

Chapter 4 gives an introduction to the Fowler–Nordheim theory, from the Fowler and Nordheim

description to the current approach. We present the modern description and notation for the

emission current density, including important corrections related to the form of the tunneling

barrier and Forbes’ contributions.

In the chapter 5 a more general criterion for detecting and interpreting nonorthodox field

emission is proposed and can be applied to any distribution of local FEFs in conducting LAFEs.

It is also shown a more general theory for extracting the scaled barrier field, f , by considering



4 Chapter 1. Introduction

the dependence of the formal area of emission of the conducting LAFEs with an applied field.

In Chapter 6 we present a simple model that is able to demonstrate that degradation on the

morphology of a conducting LAFE may cause a kinked behavior formed by two clear linear

regimes before saturation on the corresponding ordinary FN plot.

The last Chapter 7 presents the final conclusions and remarks.



Chapter 2

Random Surfaces

Many examples of natural systems can be described by random Gaussian surfaces. By analyzing

the Fourier expansion of the surfaces much information can be extracted, such that, statistical

and morphology properties, from which it is possible to determine the corresponding Hurst

exponent and consequently establish the presence of scale invariance. Therefore, in this chapter

we study the method we have used to generate random Gaussian surfaces, the Fourier filtering

method (FFM), which is built by the Fourier transform. We show that the scale invariance

is not affected by the distribution of the modulus of the Fourier coefficients. Furthermore, we

investigate the role of the Fourier phases of random surfaces. In particular, we show how the

surface is affected by a non-uniform distribution of phases.

This chapter is based on reference [12]:

de Castro, C. P., Luković, M., Andrade, R. F. S. & Herrmann, H. J., The influence of statistical

properties of Fourier coefficients on Random Gaussian surfaces., Scientific Reports, 7, 1961

(2017).

5



6 Chapter 2. Random Surfaces

2.1 Introduction

Two-dimensional random surfaces can be considered as a generalization of one-dimensional

stochastic processes. Often, properties of natural systems, such as sea surface temperatures,

rough graphene surfaces and 2D turbulence, can be mapped onto random surfaces [1, 2, 3, 4,

5, 6]. Their scaling properties can be characterized by a single parameter known as the Hurst

exponent, H. This exponent is related to the degree of spatial correlation between two points

on the surface. For all H > −1 the surfaces are long-range correlated, rough and self-affine

[6, 44, 45]. Uncorrelated surfaces correspond to an H-value of -1.

Much can be learned about the properties of random surfaces by studying the paths of constant

height (lines) extracted from them [44,46-50]. Empirical and numerical studies of these paths

suggest that, at the height corresponding to the percolation threshold, they are scale invariant

and their fractal dimension depends on the Hurst exponent H [51, 52, 47]. In some cases

they also have an additional symmetry, reflected by the conformal invariance of these paths

[4, 6]. This means that the statistics of such curves is covariant with respect to local scale

transformations [53].

There exist several methods to generate random surfaces [54]. In this work, we consider the

Fourier Filtering Method (FFM), where one first creates a random surface in the reciprocal

space and then Fourier transform it into real space. Our results are based on high performance

calculations, large system sizes as well as tens of thousands of samples.

In the context of random surfaces, it is taken for granted that critical exponents1, such as the

fractal dimension of the percolation cluster and its perimeters, or those related to the correlation

length and the susceptibility, depend only on H [55, 56]. In the case of conformal invariance,

the current view is not as straightforward. Although conformal theory is not the main topic

of this paper, it serves as motivation for our investigations [57, 58, 59, 60, 13]. In particular,

it is worth noting that random curves with well defined Hurst exponents do not necessarily

exhibit conformal invariance. For example, Bernard et al. observed conformal invariance in the

1The term ‘critical exponent’ used in this thesis is in the sense of exponent derivative of power laws depen-
dences.
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iso-height lines of vorticity fields of 2D turbulence [4]. They also showed, however, that this

property is violated for iso-height lines extracted from surfaces with the same Hurst exponent

but with randomly distributed phases of the surface heights in Fourier space. Therefore, it seems

that it is not only the Hurst exponent that plays a determinant role in conformal invariance.

Furthermore, outside the context of conformal invariance, Kalda, J. shows that gradient-limited

surfaces are not characterized only by H[56]. The possible dependence of conformal invariance

on phase correlations [4] and the existence of scale-invariant curves with scale-dependent critical

exponents [56], has therefore motivated us to investigate whether the scale invariance of iso-

height lines of random Gaussian surfaces is also affected in a similar way.

Given that each point of the random surface in reciprocal space is determined by the phase,

as well as the magnitude of a complex number, for the sake of completeness we also study the

effects of the latter on the scale invariance of the iso-height lines. Therefore, we investigate how

the critical exponents, some of them defined by Kodev, J. and Henley, C. L.[52], are influenced

by Fourier phases, especially their correlations, as well as the distribution of the magnitudes of

the Fourier components.

We show that a non-uniform distribution of Fourier phases introduces symmetries in random

surfaces and that a change in the phase correlation length in Fourier space causes a translation

of the surface in real space. Furthermore, our results show that changes in the shape of the

distribution of Fourier magnitudes, without altering their correlations, have the sole effect of

modifying the height magnitudes of the random surfaces. None of the variations described above

change significantly the H-dependence of the critical exponents, as conjectured by Schrenk K.

J. et al. in [47].
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2.2 Methods

In this section we present two fundamental methods we have used to generate such random

surfaces and find the percolating threshold: the Fourier Filtering Method and the Rank Method,

respectively.

2.2.1 Fourier Filtering Method

A set of random real numbers may be interpreted as a surface, where each number corresponds

to the height h(x) = h(x1, x2) at coordinates x1 and x2 [50, 49, 47, 54, 61]. In order to create

correlated random surfaces, we have used the Fourier Filtering Method (FFM)[62, 63, 64, 65,

66, 67], which consists in defining a complex function η(q) in Fourier space and then taking

the inverse transform to obtain h(x). The complex Fourier coefficients η(q) can be written in

the form

η(q) = c(q) exp(2πφ(q)), (2.1)

where q = (q1, q2) is the frequency in Fourier space, c(q) the magnitude and φ(q) the phase.

In order to obtain a random surface with the desired properties, we choose the power spectrum

S(q) of the surface in the form of a power law such that

S(q) ∼ |q|−βc =

(√
q2

1 + q2
2

)−βc
(2.2)

where βc = 2(H + 1) [54] defines the Hurst exponent. Then, we apply the power-law filter to a

real random variable u(q) obtaining for the magnitude

c(q) = [S(q)]1/2u(q). (2.3)

In general, u(q) is Gaussian distributed with finite variance, φ(q) ∈ [0, 1] is a uniformly dis-

tributed noise and c(q) must satisfy the conjugate symmetry condition, c(-q) = c(q) [54].

Without loss of generality, we will consider the case where u(q) has unit variance.
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The choice of the power spectrum as a filter is justified by the Wiener-Khintchine theorem

[54, 68], which states that the autocorrelation function, C(r), of a time series is the Fourier

transform of its power spectrum. Therefore, from the inverse discrete Fourier transform of η(q)

we obtain h(x1, x2)

h(x1, x2) =
N−1∑
q1=0

N−1∑
q2=0

η(q1q2) exp(−2iπ(q1x1 + q2x2)) (2.4)

with the desired power-law correlation function [54, 47, 44]

C(r) ∼ r2H . (2.5)

According to the definition above, if H = −1 and therefore βc = 0, the power spectrum in Eq.

2.2 becomes independent of the frequency, giving rise to uncorrelated surfaces. As H increases

from −1, height-height correlations are introduced into the surface.

For any random surface defined on a lattice with H ≥ −1, the percolation threshold pc can

be determined using the well established rank method. Moreover, a conjecture was recently

put forward for the H-dependence of the fractal dimension and critical exponents at the corre-

sponding critical point pc [47]. It should also be noted that, as a consequence of the extended

Harris criterion [55, 69, 48, 70, 71, 72], there are going to be some critical exponents of 2D sys-

tems that are not influenced by correlation effects related to H ∈ [−1,−3/4], implying that, for

those Hurst values, the exponents are expected to be the same as for the uncorrelated system

[47].

In the case of self-affine surfaces, for which H > 0, the percolation threshold is not well defined,

since there is no unique value of the surface height at which the system percolates. Nevertheless,

in this case also, it is possible to extend some concepts of percolation theory and relate them

to H [44, 45].
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2.2.2 Rank Method

After generating the discrete random Gaussian surfaces, we use the rank method[73] to reach

the percolation threshold in the following way. One first ranks all sites in the landscapes

according to their height, from the smallest to the largest value. Then, a ranked surface is

constructed where each site has a number corresponding to its position in the rank, so that

the following percolation model can then be defined. Initially, all sites of the ranked surface

are unoccupied. Then the sites are occupied one by one, according to the ranking. At each

step, the fraction of occupied sites p increases by the inverse of the total number of sites on the

surface, thereby changing the configuration of occupied sites. By continuing this procedure a

critical height hc is reached at which the occupied neighboring sites create a spanning cluster

(percolation cluster) that connects two opposite borders of the surface (fig. 2.1).

2.3 Clusters and perimeters

At the critical height, the fraction of occupied sites reaches the percolation threshold pc. From

the percolation cluster we extracted the fractal iso-height lines that correspond to the complete

perimeter and accessible perimeters [47, 44, 74, 75]. The complete perimeter consists of all

bonds between the percolating cluster and unoccupied sites. This is illustrated in fig. 2.1,

where light-gray represents the percolating cluster and the black line follows the complete

perimeter.

The accessible perimeter is obtained by eliminating from the complete perimeter all line seg-

ments within fjords with a bottleneck equal to the length r of the current stick. This procedure

stems from the yardstick method used to measure the perimeter’s fractal dimension. Here, for

each value of r, the length of any curve is defined by the number of straight yardsticks Nr

required to go from one extreme to the other by jumping from one point on the curve to the

next at a distance r. Then, the fractal dimension dfp is defined by

Nr ∼ r−dfp . (2.6)
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Figure 2.1: Schematic picture of the percolating cluster (light gray) connecting the top of
the square with the bottom. The white region corresponds to sites that do not belong to
the percolating cluster (unoccupied sites and other clusters) and the black line is the external
(complete) perimeter. This map was generated by OriginPro 2016 (64-bit) Sr1 b9.3.1.273
(http://www.originlab.com/).

Fig. 2.2.a shows an arbitrary curve where the black dot, in the center of the green circle,

indicates the current stick position. During this specific search for the next point on the curve,

three possible positions indicated by red, green and blue X’s are found. If the option to always

take the closest position along the curve (red X) is made, the complete perimeter is obtained.

On the other hand, if one always takes the most distant point along the curve (blue dot), which

does not avoid the external border, the accessible perimeter is obtained. Indeed, this rule skips

points inside fjords and accesses only the external boundary of the coast, independently of the

chosen direction (in the case of Fig. 2.2 either bottom-up or top-down), because there is no

preferential correlation direction. Fig. 2.2.b shows the difference between the considered paths

for one particular stick size.

2.4 Results and Discussion

Having described the method for generating random surfaces using two sets of random variables,

u(q) and φ(q), we now discuss how a surface is affected by changing the form of their respective

distributions.

Although common [54], it is not always the case that u(q) follows a Gaussian distribution

and φ(q) a uniform one. For example, Giordanelli et al. [6] found that for graphene sheets

u(q) is well fitted by f(|u|) ∝ c1|u| exp−c2|u|
2
, where c1, c2 are parameters of the fit. They
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x x
x

a) b)

Figure 2.2: a) Illustration of the rules used to compute the fractal dimension of the complete
and accessible perimeters with the yardstick method. Suppose the sticks start to follow the
coast from the bottom. The green circle shows the region of coast accessible to a particular
stick. The X’s represent the next possible starting points of that particular stick. If the closest
point along the coast (red X) is always chosen as the next starting point, we obtain the complete
perimeter. If, on the other hand, the most distant point (blue X) is chosen, then we obtain the
accessible perimeter. Here, points such as the green X, which are neither the closest nor the
most distant from the center of the circle, are disregarded. b) Paths made by sticks of equal
sizes of the complete (blue sticks) and accessible (red sticks) perimeters.

also found that the Fourier phase distribution φ(q) is bi-modal rather them uniform [6], as

illustrated in Fig. 2.3. On the other hand, for the vorticity field of 2D turbulence, we found

through independent analysis that u(q) follows a Gaussian distribution and that φ(q) is nearly

uniformly distributed used. Both u(q) and φ(q) are obtained by creating a histogram of the

random terms of the Fourier transform of the surface being studied.
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Figure 2.3: Probability density function of |u(q)| (left) and φ(q) (right) in the case of the
graphene sheet (red squares) and the vorticity field (black circles). The red and black curves
in left panel are best fits for f(|u|) ∝ c1|u| exp−c2|u|

2
and the Gaussian function, respectively.

By an adequate choice of the u(q) and φ(q) distributions, we were able to generate FFM surfaces
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that are statistically similar to those in graphene and the vorticity fields in 2D turbulence. This

allowed us to investigate how different distributions influence the resulting random surfaces.

Fourier phases

We start by showing the results obtained for three different φ(q) distributions (Gaussian, uni-

form and bimodal), while always keeping the same Gaussian distributed u(q). Applying the

method described in the previous section, we obtained the dependence of the fractal dimension

of the complete (dcomf,H ) and accessible (daccf,H) perimeters on H, as illustrated in fig. 2.4. Since ex-

act values for the fractal dimension of those perimeters are known only for H = −1 and H = 0,

all other proposed analytical dependencies on H are conjectures supported by numerical results

[47, 98, 99, 100]. In the case of uncorrelated surfaces, dcomf,H=−1 = 7/4 and daccf,H=−1 = 13/10.

When H increases from −1, the fractal dimension of complete and accessible perimeters start

to converge. Once the surfaces are described by a discrete Gaussian Free Field [101] for H = 0,

the results consistently indicates df comH=0 = dfaccH=0 = 3/2. Our results therefore point towards

the absence of any dependence of df comH and dfaccH on the shape of the distribution of φ(q). As

shown in fig. 2.4, the H-dependence of df comH and dfaccH agrees with the conjectures by Schrenk

K. J. [47] for both, long-range correlated (fig. 2.4.a) and rough surfaces (fig. 2.4.b).
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Figure 2.4: Fractal dimension of the complete and accessible perimeters as a function of H, for
a) H < 0 and b) H > 0, and different φ(q) distributions. In a), the black lines are conjectures
proposed by Schrenk K. J. et al. [47]. All values are averages over at least 104 samples and
error bars are defined by the variance of the distribution.

At first glance, the influence of the Fourier phases on the random surface might not be obvious.
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However, we notice that the phase distribution mainly influences inversion symmetries with

respect to the center of the surface, as shown in fig. 2.5. In order to introduce this effect, φ(q)

is given by a Gaussian distribution with a very small variance, i.e. a peaked distribution . In

fig. 2.5 it is possible to identify the same morphological structures when the figure is rotated

by an angle π. This occurs because, as the variance goes to zero, the distribution values of the

Fourier phases converge to a constant (the mean value) accentuating the symmetry effect[102].

In the limiting case of zero variance the distribution collapses onto a constant value, producing

a perfect inversion symmetry in real space. Therefore, in order to avoid this symmetry effect a

uniform distribution is used.

Figure 2.5: Surface map with inversion symmetry with respect to the center. This symmetry of
the surface results from the use of a Gaussian distribution φ(q) with a small variance σ = 0.001.

Correlated phases

It turns out that the Fourier phases from the vorticity fields and graphene sheets that we

analyzed are uncorrelated[6]. Nevertheless, in order to understand how correlations affect

random surfaces, we generated some samples with artificially correlated Fourier phases. For

this purpose, we introduced correlations in the Fourier phases by applying the FFM twice.

First we used the FFM to create a surface of correlated random phases in q-space with Hurst

exponent Hϕ, according to the Eq. 2.1. Applying the FFM again, we generate Gaussian surfaces

with Hurst exponent H and with the desired coefficients and correlated Fourier phases. Using

always the same distributions of φ(q) and u(q) and keeping fixed the value of H and the seed

of the random number generator, we studied the changes in the surface caused by a change in
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Hϕ. We found that the correlation of Fourier phases causes a linear translation of the random

surfaces (fig. 2.6). A change in Hϕ modifies the slope of the power spectrum (Eq. 2.2), causing

all sites of φ(q) to shift proportionally, which means that a constant value is added to the

Fourier phases, causing a translation on the random surface (in real space)[102].

d)c)b)a)

Figure 2.6: Maps of phase correlated surfaces. Panels a), b), c), and d) show examples of
surfaces with H = 0.5 and Hphase = −0.9,−0.2, 0.1, and 0.4 respectively. The arrows serve
as a guide to show the linear translation of the random surface due to correlations introduced
between the Fourier phases.

Magnitude of the Fourier coefficients

We generated sets of random surfaces, each having φ(q) uniformly distributed but with a

different distribution of u(q): Gaussian, uniform and the distribution found by Giordanelli et

al. in graphene. We then determined the average values of two critical exponents of percolation

corresponding to each set of surfaces with a different u-distributions. We first considered the

H-dependence of the correlation length critical exponent νH for −1 ≤ H ≤ 0. It is well

established that the critical point pc ' 0.592746 [55, 50, 48, 71] is the infinite system size

limit of the percolation threshold pc(H,L), which is H-dependent for finite system sizes, L.

Furthermore, the expected scaling behavior [74, 75, 47] is

|pc(H,L)− pc| ∼ L−1/νH , (2.7)

with νH = −1/H [47, 103, 104]. Our numerical results in fig. 2.7 not only confirm that the

scaling relation in Eq. 2.7 is respected no matter which one of the three u-distributions we use

but also that the value of pc remains unchanged.
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A consequence of the scaling relation in Eq. 2.7 is that in the asymptotic limit it is sufficient

to compute the critical exponents at the percolation threshold, pc.
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Figure 2.7: Scale analysis of the convergence of the percolation threshold pc,H . For the square
lattice, the site percolation threshold pc for uncorrelated surfaces is pc ' 0.592746. The black
lines serve as guides to the eye with slope H = −1/νH [74, 75, 47].

At this critical point, the percolation cluster is a fractal with fractal dimension df . The occu-

pancy, Mmax, which is the number of sites that belong to the percolation cluster, scales with

lattice size L as,

Mmax ∼ Ldf . (2.8)

Using Eq. 2.8 we recovered numerically the value of the fractal dimension as a function of the

Hurst exponent. In fig. 2.8 our results show that the value of the fractal dimension of the

percolation cluster remains the same for all three distributions of u(q).

We also checked the H-dependence of the susceptibility critical exponent γ by considering the

scaling behavior of m2, the second moment of the distribution of the cluster sizes at pc defined

as [55]

m2 =
∑
k

M2
k

N
− M2

max

N
. (2.9)

Here, the sum runs over all clusters, where Mk is the mass of cluster k, and we use the fact

that the following scaling behavior holds [55]:

m2 ∼ LγH/νH . (2.10)
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For uncorrelated percolation (H = −1), γH=−1 = 43/18, νH=−1 = 4/3, so that df = 91/48

and γH=−1/νH=−1 = 43/24 [55]. Fig. 2.8 shows the dependence on H ∈ [−1, 0] of both critical

exponents, the fractal dimension of the percolation cluster and the exponent ratio γ/ν, for

different distributions of u(q).

In conclusion, our results suggest that both exponents, df and γ/ν, are independent of the

distribution of u(q).
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Figure 2.8: Fractal dimension df of the percolation cluster and critical exponent ratio γH/νH
as a function of the Hurst exponent H for surfaces with different distributions of u(q). The
black lines are conjectures proposed by Schrenk K. J. et al. [47] based on the hyperscaling
relation [55]. All values are averages over at least 104 realizations and error bars are defined as
the variance of the distribution of their values.

2.5 Conclusions

We considered two concrete examples of random surfaces, namely, the vorticity field of turbu-

lent systems in two dimensions and rough graphene sheets. We investigated how these random

surfaces and in particular the critical exponents are influenced by the presence of phase cor-

relations and by changes in the distribution of the Fourier coefficient magnitudes and Fourier

phases. Our results show that the Fourier phases distribution of the vorticity field and graphene

sheets, within error bars, lead to the same value for the fractal dimension of the complete and

accessible perimeters. We also showed that long-range phase correlations in Fourier space lead

to a translation of the random surfaces, and that they do not have any influence on their sta-

tistical properties. For different distributions of magnitude of Fourier coefficients our results
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suggest there is no H dependence of the fractal dimension of the percolation cluster and suscep-

tibility exponent. In addition, we recovered for the critical exponents the same H-dependence

as conjectured by Schrenk K. J. [47]. Although we have only considered three examples of

Fourier coefficient distributions, we do not expect different results for any other distribution

with finite variance.
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Schramm-Loewner Evolution Theory

In this chapter, we present some aspects of the SLE theory. The original papers on SLE are

long and difficult, using, moreover, concept and methods foreign to most physicists. We suggest

the references [80, 81, 82, 83, 84] for the proofs we will skip.

One of the most exciting concepts in theoretical physics are those that relate algebraic properties

to geometrical ones. As examples of this we can cite the patterns of the paths of Brownian

motion, the forms of percolating clusters, the shapes of snowflakes and phase boundaries, or

still the geometric meaning of the equations of general relativity, and their realization in the

shapes of possible universes and in black holes.

In 1920 Loewner[76] shown that any such non-crossing curve, in the plane, can be described by

a dynamical process called Loewner evolution, in which the curve is imagined to be grown in a

continuous fashion. Loewner considered the evolution of the analytic functions which confor-

mally maps the region outside the curve into a standard domain. This evolution, and therefore

the curve itself, turns out to be completely determined by a real continuous function, ζ(t). For

random curves, ζ(t) is also random. The seminal contribution of Schramm[11] affirms that if

the measure on the curve is comformally invariant, the only possibility is that ζ(t) be a one-

dimensional Brownian motion, characterized only by a single parameter, namely the diffusion

constant κ. It should apply to any critical statistical mechanics model in which it is possible

to extract this non-crossing path on the lattice, as long as their continuum limits obey the

19
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underlying conformal invariance property. Especially, for the 2D percolation model, Smirnov

[77] shows the conformal invariance property for the continuum limit of site percolation and,

together with Werner[78], present a rigorous derivation of the values of the critical exponent.

Two classes of SLE have been defined[11]: the radial and the chordal SLE. They differ by the

positions of the end points connected by the random sets. The radial SLE related to curves,

joining usually 0 to 1 in the open unit disk U , while the chordal SLE, related to curves started

at the origin to the point at infinity in the upper half-plane, H = {z, Im(z) > 0}. Below, we

shall only consider the so-called chordal SLE.

3.1 Conformal Mappings

Since the 1980s, starting from the work of Belavin, Polyakov and Zamolodchikov and of Cardy,

the extreme usefulness of conformal invariance in understanding 2D critical phenomena has

been realised[79].

A conformal map or a bijective holomorphic function1 f(z), of a simple connected domain

D 6= C onto another simply connected domain D′ 6= C, is a one-to-one map which preserves

angles. It is called simply connected domain if it contains no holes. That is, if γ0 and γ1 are

two curves in D, which intersect each other at a certain angle, then their images g◦γ0 and g◦γ1

must intersect at the same angle. In practice this means that a conformal map g : D → D′

is a bijective and analytic function on D, and therefore has nonzero derivative everywhere on

D and the inverse g−1 is also conformal. More precisely, a domain is simply connected if its

complement in the complex plane is connected or, equivalently, if every closed curve in the

domain can be contracted continuously to a single point of the domain. The main theorem

behind the conformal maps is the Riemann mapping theorem that we will be discussed in the

next section.

1A holomorphic function is a complex-valued function that is complex and differentiable in a neighborhood
of every point in its domain of definition.
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3.2 The Riemann Mapping Theorem

The Riemann mapping theorem states that two any simply connected proper subset of the

complex plane can be conformally mapped onto another. Then, there exist a unique conformal

map g : D→ D′ such that g(0) = z, g′(0) > 0.

When the domain D differs only locally from the upper half plane H, that is, if K = H \D it is

bounded. Such a set K is called a hull. As we are interested in 2D curves, the hull is basically

a compact set bordering the path. Such definition guarantee that the hull K is always simply

connected because, when the path touches itself, all the space trapped inside the loops formed

belong to the hull. Then, for any hull K, there exists a unique conformal map, denoted by gK ,

Figure 3.1: An example of hull K in the upper hall plane together and the conformal map
g−1
K : H→ H \K and its inverse gK : H \K→ H[82] .

that maps the boundary of one region onto the boundary of the other, i.e., sends H \ K onto

H, such that satisfies the normalization condition,

lim
|z|→∞

gK(z)− z = 0 (3.1)

known as hydrodynamic normalization. The uniqueness of the conformal map results from the

condition that gK(z) ∼ z for |z| → ∞. So, the conformal map gK can be chosen to map infinity

to infinity, as,

gK(z) = bz + a0 +
a1

z
+
a2

z2
+ ... . (3.2)

By Eq. 3.1 we have b = 1 and a0 = 0 and, therefore, around infinity gK have the form,

gK(z) = z +
aK
z

+O(|z|−2) , (3.3)
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where aK is a real function called half-plane capacity. The form of aK is not straightforward

deduced which has demanded some effort from mathematicians. Based on parametrization of

the trace, aK , a priori, may have several forms as long as it obeys some properties like positivity,

continuity and monotonicity[85, 86]. We adopt a common parametrization, aK = 2t.

3.3 Loewner Differential Equation

Loewner’s idea [76] was to describe a path γ(t), defined by a real parameter t, and the evolution

of the tips τt in terms of the evolution of the conformal mappping gt(z). Such conformal

mappings are based on the Reimann mapping theorem which guarantees the existence of a

conformal transformation that maps any two regions of the complex plane into one another,

as described in the sections 3.1 and 3.2. The connection between the path and the conformal

mappings is made by a continuous real function ζ(t) = gt(γt) named driving function. Once

γ(t) is part of the boundary H \ γ[0,t] (hull) one is able to map it to a point in the border of the

domain H by ζ(t).

Lets consider that γ(t), with t ≥ 0, is a continuous non-crossing path in a upper half complex

plan H which starts at the origin, as exemplified in Fig.3.2. Then, based on all assumptions

0

Figure 3.2: An example of chordal trace in a upper half plane H = {z : Im{z} ≥ 0} with
γ0 = 0 and γ∞ =∞.

already made related to the conformal map, the Reimann mapping theorem, for all z ∈ H, the
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conformal maps gt(z), expressed by Eq. 3.3, with the parametrization aK = 2t, satisfies the

Loewner differential equation

dgt(z)

dt
=

2

gt(z)− ζ(t)
, g0(z) = z, (3.4)

driven by a suitably defined continuous function ζ(t) (driving function), as illustrated in Fig.3.3.

So, from a path γ(t) one has gt(z) and, finally may compute ζ(t) by solving the Loewner

Figure 3.3: Scheme of the evolution of the Loewner equation. For each time step there is a
conformal map gt that maps the upper half plane minus the hull Kt, related to the path γt, to
the upper half plane itself, gt : H \ γ[0,t] → H. The point on the boundary of H where the trace
is mapped is the driving function ζt.

differential equation. But also the other way around is possible, starting from a suitable ζ(t)

from which one extracts the curve by taking the limit,

γt = lim
z→0

g−1
t (ζ(t) + z) , (3.5)

In our analyzes, we start from a path and, by solving the Loewner equation, we investigate the

statistical properties ζt. For a more rigorous mathematics definitions one can follow [76, 85, 86].

3.4 Schramm-Loewner Evolution

It was conjectured in [88], about thirty years ago, that in the continuous limit of the interfaces

of 2d statistical systems at criticality should be conformally invariant (in an appropriate sense).

This statement was made really precise and powerful by Oded Schramm[11], who understood
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what are the consequences of a conformal invariance for a set of random curves and how to

exploit them. This led him to the definition of the Schramm Loewner evolution (SLE) theory.

The new description focuses directly on non-local structures that characterize a given system,

be it a boundary of an Ising or percolation cluster, or loops in the O(n) model, as examples.

This description uses the fact that all these non-local objects (path) become random curves at

a critical point in the continuum limit, and these curves may be precisely characterized by the

stochastic dynamics. It was Schramm’s idea that one can use Loewner equation to describe

conformally invariant random curves. If one chooses ζ(t) to be a random real function that

satisfies certain conditions: (i) if ζ(t) is continuous with probability one, (ii) have independent

identically distributed increments and (iii) if ζ(t) is reflection invariant (x+ iy → −x+ iy).

Then, if such ζ(t) follows these three conditions, it can only be a scaled version of the Brownian

motion obeying the familiar Langevin equations,

〈
(ζ(t)− ζ(t′))

2
〉

= κ|t− t′| (3.6)

where κ is a dimensionless constant, diffusion coefficient, whose value is a very important

determinant of the statistical properties of the curve. Once ζ(t) =
√
κBt, with κ ≥ 0 and

(Bt)t≥0 a one-dimensional standard Brownian motion, then by Eq.3.4 one can generate SLEκ

with different properties[95]. Note that we may also think in a opposite way. From a such path,

by solving the Loewner equation one extracts the driving function ζt and, therefore, if ζt is a

one-dimension Brownian motion, in the continuum limit, the path are SLE with a specific κ.

Up to here, we refer to SLE at a particular value of κ as SLEκ, as usual.

Higher values of κmeans a more sinuous Brownian motion, implying in a more sinuous generated

trace. For 0 < κ ≤ 4 the trace is not sinuous enough to touch itself. When 4 < κ < 8 the trace

become sinuous enough to touch itself where, as soon as κ gets close to 8, the hull eventually

swallow all domain. Finally, if κ ≥ 8 the trace spacing filling the domain. An example of this

SLE phases is shown in Fig.3.4.

The sinuosity of the trace can be associated to its fractal dimension, df , with its dependence
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Figure 3.4: Illustrative examples of the SLE phases.

on κ proved by Beffara [96] as being,

df = min
(

1 +
κ

8
, 2
)
. (3.7)

Schramm have observed that, by satisfying these previous conditions for ζ(t) and solving the

Loewner equation, one is able to generate conformally invariant traces as consequence of two

crucial properties: the domain Markov property and the stationarity of increments of such

conformally invariant interfaces. The Markov and stationarity of increments property make

it plain that to understand the distribution of the full interface it is enough to understand

the distribution of a small, or even infinitesimal, initial segment, and then ‘glue’ segments via

conformal maps.

To describe the domain Markov property and the conformal invariance of such trace γ, lets

define a measure µ(γ;D, ri, rj) in a domain D of such trace γ that connects two points on the

boundary δD of D. The domain Markov property guarantee that if γ is divided into two disjoint

parts: γ3,1 from r3 to r1, and γ3,2 from r3 to r2. The conditional measure µ(γ3,1|γ3,2;D, r1, r2) =

µ(γ3,1;D\γ3,2, r3, r1), that is, the measure is statically equivalent in both domains. This means

that with γ3,1 and γ3,2 starting in the same point r3, the conditional measure of the trace γ3,1

that have γ3,2 in the domain D (box a in Fig.3.5) is the same that the measure in the domain

D minus γ3,2, D \ γ3,2 (box b in Fig.3.5).

Now, let f be a conformal mapping of the domain D onto of D′, so that the points (ri, rj) on



26 Chapter 3. Schramm-Loewner Evolution Theory

Figure 3.5: (a) The conditional measure of γ3,1 with γ3,2 in the domain D (µ(γ3,1|γ3,2;D, r1, r2))
is statically equivalent to (b) the measure of γ3,1 in a domain D with γ3,2 removed (µ(γ3,1;D \
γ3,2, r3, r1)), that is, D \ γ3,2.

the boundary δD are mapped to points (r
′
i, r
′
j) on the boundary δD′. The measure µ on traces

in D induces a measure f ∗ µ on the image traces in D′. The conformal invariance property

states that this is the same as the measure which would be obtained as the continuum limit of

lattice traces from (r
′
i, r
′
j) in D′. That is

(f ∗ µ)(γ;D, ri, rj) = µ(f(γ);D′, r′i, r
′

j). (3.8)

In practice, for example, the conformal invariance guarantee that, in the continuum limit, a

trace generated in a square domain is statistically equivalent to one conformally transformed

to a circular domain.

3.5 Numerical Method

As mentioned before, the SLE approach may be used for two different analyses: starting

from a one dimension Brownian motion with specific κ generates random conformal invariant

curves which also obey the Markov properties and from such candidate SLE curve extract the

driving function to investigate if its is a one dimension Brownian motion. We took the second

option in order to verify if the border of percolation clusters from correlated random surfaces

may be SLEk curves. However, we will start the description of the algorithm assuming we

have a one-dimension Brownian motion ζt and, by solving the Loewner’s equation, extract the
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correspondent curve. In this section we describe the well establish algorithm used throughout

this thesis, the zipper algorithm[111, 108, 109, 110].

3.5.1 Zipper Algorithm

Let us take a driving function ζt for t ∈ [0, tn) : 0 = t0 < t1 < t2 < ... < tn. The conformal

map gt is solution of the Loewner’s equation for ζt, mapping H\γtk onto H. We can convenient

define a function Gk which maps H \ γtk−1 onto H \ γtk ,

Gk = gtk ◦ g−1
tk−1

, (3.9)

and, therefore, the solution of Loewner’s equation can be written as

gtk = Gk ◦Gk−1 ◦Gk−2 ◦ ... ◦G2 ◦G1 . (3.10)

The function Gk is not a solution of Loewner’s equation because the trace generated, after the

map, does not start at the origin, as we illustrate in the Fig. 3.3 (In Fig. 3.3 the function gt1

and gt2 are G1 and G2, respectively). To fix that, it is defined a new function,

gk = Gk(z + ζtk−1
)− ζtk−1

, (3.11)

which has a shift by ζtk−1
to relocate the trace to the origin. Then, just to be more precise, gk

is obtained by solving the Loewner equation with shifted driving function ζ̄∆tk = δk = ζk− ζk−1

where ∆tk = tk − tk−1. So, this conformal map takes H minus a cut starting at the origin onto

H. So, if one is interested in extracting the trace, it is necessary to take the inverse of gk

g−1
k (z) = G−1

k (z + ζtK−1
)− ζtk−1

(3.12)

which takes H and introduces a cut which begins at the origin. The k − th point of the curve

is found by

γtk = g−1
1 (...g−1

k−1(g−1
k (δk) + δk−1)...+ δ1) (3.13)
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Finally, we can extract the trace,

γk = h1 ◦ h2 ◦ ... ◦ hk(0) (3.14)

where hk = g−1
k (z + δk).

We approximate the driving function on the interval [tk−1, tk] by a function for which the

Loewner equation may be explicitly solved. So, the maps Gk and gk can be found explicitly

and then, by the iteratively equation 3.10 we can approximate gk to gt. The form of hk, however,

is dependent on the interpolation drive δk that can be any analytical solution. However, we will

consider the explicit solution refereed ‘vertical slits’[108, 109, 110]. Vertical slit corresponds to

a simple solution of the Loewner equation. Since the driving function does not start at 0, the

curve will not start at the origin. The curve is just a vertical slit from δk to δk + i2
√

∆t. Using

vertical slits means that we approximate the driving function by a discontinuous piecewise

constant function, and for the limit ∆t → 0, the generated trace converge to an SLE trace.

Then, hk has the form [109, 110]

hk(z) = δ + i
√

4∆t− z2 . (3.15)

As previously mentioned, we are interested to verify if SLE candidates are in fact SLEk curves.

For that, we need to use the inverse of the Eq.3.14

0 = h−1
k ◦ h

−1
k−1 ◦ ... ◦ h

−1
1 (γk) . (3.16)

Then, the conformal map h−1
k ◦ h

−1
k−1 ◦ ... ◦ h

−1
1 sends H \ γk onto H. As the vertical slit maps

the origin to δk + i2
√

∆t, that is,

hk(0) = δk + i2
√
δt , (3.17)
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so, by Eq. 3.16 and Eq. 3.17, we can write,

ωk = δk + i2
√
δt = h−1

k ◦ h
−1
k−1 ◦ ... ◦ h

−1
1 (γk) , (3.18)

where ωk means the map of such piece of the trace γk onto the border of H. Then tk and ζtk

are easily determined

tk =
1

4

k∑
i=1

Im{ωi}2, ζtk =
k∑
i=1

Re{ωi} , (3.19)

with

ωk = h−1
k−1 ◦ h

−1
k−2 ◦ ... ◦ h

−1
1 (γk) , (3.20)

and, taking the inverse of the Eq.3.15,

h−1
k (z) = i

√
−Im{ωi}2 − (z −Re{ωi})2 . (3.21)

Surprisingly, the effective algorithm is quite easy to implement. In summary, the analyzes of

the SLE candidates curves, we will perform in the next section, from a such candidate γ in a

upper half plane consist to calculate ωk iteratively (Eq. 3.18). Finally, from the real term of

ωk, the next step is to calculate the driving function ζtk and, from its imaginary term, calculate

the SLE time tk.

Given that, even for curves with equal length and step sizes, the discretized times tk are not

equally distributed, we linearly interpolate the measured driving function at equally spaced

time intervals.

3.6 Results

Our main goal is to study the properties and symmetries of the complete perimeter of the

percolation cluster extracted from correlated landscapes with H in the interval [−1, 0]. In Fig.

3.6 we show examples of complete perimeters and their respective driving functions. So far,
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Figure 3.6: Examples of full perimeters of percolating cluster for H = −0.1 and H = −1 and
their respective driving function, calculated by the zipper algorithm. The jumps of the driving
function reproduce the sinuosity of its respective curve.

analytical results for the critical exponents have been obtained only in the cases where H = −1

(uncorrelated surface) and H = 0. Schrenk et al. [47] conjectured the following functional form

for the H-dependence of the complete perimeter fractal dimension:

df =
3

2
− H

3
, H ∈ [−3/4, 0] , (3.22)

and was accurately reproduced by us, based on different distributions of u(q). In Fig. 3.7 we

present our numerical results for the H-dependece of the complete perimeter for u(q) Gaussian

distributed (as shown also in Fig. 2.4). As a result of section 2, the H-dependence was shown

to be independent of the shape of the distribution of the two-dimensional random numbers,

u(q), used to generate the correlated landscapes [12].

In the case where the random curve is SLE in the scaling limit, the resulting driving function

is a Brownian motion with mean square displacement that scales with time as

〈
ζ2
t

〉
∼ κt. (3.23)

We therefore investigate this dependence for critical site percolation interfaces of random land-

scapes with H values in the interval [−1, 0]. As shown in Fig. 3.8, we have obtained a good

linear dependence of the variance on time. The different slopes (κ values) are due to the differ-

ent Hurst exponents of the random surfaces from where the curves were extracted. The mean

square displacement error ∆ 〈ζ2
t 〉 was defined as the fourth momentum of the driving function,
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Figure 3.7: Fractal dimension of the full perimeter as a function of H, calculated via yardstick
method[12]. The red line represent a conjecture proposed by Schrenk et al.[47]. All values are
averages over 104 samples and the error bars are defined by the variance of the distribution of
the fractal dimension values.

computed as follows:

∆
〈
ζ2
t

〉
=

√
1

N

[
〈ζ4
t 〉 − 〈ζ2

t 〉
2
]
,

〈
ζ4
t

〉
=

1

N

N∑
k=1

ζ4
t , (3.24)

where N is the total number of samples of driving functions.

In order to determine the value of κ we first made a second order polynomial fit of the data for

the time evolution of 〈ζ2
t 〉 (Fig. 3.9). We then took the derivative of 〈ζ2

t 〉 at each time step, as

shown in the inset of Fig. 3.9. Using κmax and κmin to denote respectively the maximum and

minimum values of κ, we estimated κ and its corresponding error with the following expression:

κ =

(
κmax + κmin

2

)
±
(
κmax − κmin

2

)
. (3.25)

Following Equation 3.25, we calculated κ for a family of curves associated with different values

of H. The results are shown in figure 3.10. Combining the conjecture in equation 3.22 and
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Figure 3.8: The linear time dependence of the mean square displacement of the driving function
for different values of Hurst exponent. Without loss of information, in this plot we did not
show all the data points used for the full calculation of the κ. All values are average over 104

samples and the error bars (inside the symbols) are defined by the variance of the mean square
displacement distribution of the driving function.

equation 3.7, one may write the functional dependence of κ on H as follows:

κ = 8

(
1

2
− H

3

)
. (3.26)

As shown in the figure 3.10 the conjecture in equation 3.26, represented by the red curve, is in

good agreement with the values of κ estimated by the zipper algorithm.

In order to confirm that a random curve is SLE it is not sufficient that the evolution of the

means square displacement of the corresponding driving function is linear in time as shown in

figure 3.9. It is also necessary that the driving function is uncorrelated in time. We therefore

tested for the Markov property of the driving function by computing its time correlation function

c(t, τ), defined by:

c(t, τ) =
〈ζt+τζt〉 − 〈ζt+τ 〉 〈ζt〉√(

〈ζ2
t+τ 〉 − 〈ζt+τ 〉

2) (〈ζ2
t 〉 − 〈ζt〉

2) . (3.27)

As shown in Fig. 3.11 the correlation c(t, τ) goes to zero after a few times steps, as expected for

Brownian motion. The short time correlation is associated to the discretization of the curve,

i.e. due to the finite grid size. For completeness in the investigation of Markov property we

also calculated the distribution of the driving function for a specific time (t∗), which is shown
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Figure 3.9: The linear time dependence of the mean square displacement of the driving function
for different Hurst exponents. The red line corresponds to the second order polynomial fit
(y = b1x

2 + b2x + c, where b1 ∈ [10−6, 10−5], b2, c are real numbers). The dashed blue lines
represented by YMax(x) and YMin(x) are lines with the maximum and minimum slope (κ)
calculated by taking the derivative of the mean square displacement (see inset).

to follow a Gaussian distribution (see inset of Fig. 3.11).

Conclusion

Given that many systems can be viewed as long-range correlated landscapes, properties of the

iso-height lines extracted from them become relevant. Our results suggest that the complete

perimeter of the percolating cluster of long-range correlated landscapes (−1 ≤ H ≤ 0) are

statistically equivalent to SLE curves. We found consistent agreements between the diffusion

constant κ calculated by the zipper algorithm and the κ calculated via the fractal dimension

of the SLE curves[106]. In addition, we also showed that in the scaling limit the curves are

Markovian in nature, in the sense that their driving functions are uncorrelated in time and

Gaussian distributed at specific points in time. Having established that the curves under study

are indeed SLE allows us to extend the established results from SLE to iso-height lines and

to generate an ensemble of such curves just solving a stochastic differential equation, without

the need to generate the entire landscape.
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Chapter 4

Fowler-Nordheim Theory

The main purpose of field electron emission theory is to find out the current-field characteristic

of field emission. The Fowler-Nordheim (FN) theory is an elementary field electron emission

theory. Fowler and Nordheim gave an analytic formula on the emission current density, based

on a simplified field electron emission model and a series of assumptions. Actually, by using the

series of assumptions in an elementary field emission model, one can, analytically or approxi-

mately, solve the field emission problem deriving then the dependence of the emission current

density on electric field, J − F . The basic concepts and methods of the FN theory enable us

to understand the basic behavior of field emission. Therefore, they are just a starting point of

the field emission theory for more complicated field emission systems, such as semiconductors,

surface, impurity effects, and nanowires.

There is no connection between the symbols used in the next sections with those defined in the

previous Chapters.

4.1 General Physical Assumptions

The general assumptions of the FN physical model are as follows [112]:

• the emitter has a smooth surface from the microscopic point of view (this approxima-

35
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tion enables us to catch the bulk properties in field emission even though the effects

of impurities, defects and geometric shape of emitter could play some role in the field

emission);

• there exist a uniform electric field F external to the emitting surface;

• the work function φ is independent of the external electric field because the electric field

cannot penetrate into the metal. However, for semiconductors and nanomaterials, such

as CNTs, electric field could penetrate into them;

• the potential energy in which an electron moves is given by a Sommerfeld-type model,

modified by the external electric field (Sommerfeld-type models are ‘free-electron’ models

that assume no interaction between electrons, or between electrons and individual ion

cores);

• electrons emission is in an equilibrium state obeying Fermi-Dirac statistics;

• almost all emitted electrons are able to tunnel through the potential barrier.

There exist different methods to derive the same field emission equation. As examples are

Fowler-Nordheim’s method, Morphy-Good’s method, Young-Gadzuk’s method, Haug’s method

and Forbes’s method[112]. Even though they use different ways to integrate in the energy

range, all of these methods will give the same field emission equation. However, when one

generates these methods to more complicated field emission models, one should choose the

method carefully and mind about the different approximations.

4.2 Local Current Density Type Equation

In this section we will derive the electron emission current density for a metal following the

assumptions previously pointed out.
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4.2.1 Energy-space Diagrams

How to analytically derive the emission current density for a general potential barrier is still a

challenging problem. However, it can be solved by a combination of Schrödinger and Poisson

equations from the first-principles point of view. In principle, the vacuum potential barrier

should be three-dimensional and present couplings between dimensions, x-direction coupled

with y − z directions. Also, the vacuum potential barrier depends on the applied electric field,

the shape of emitter (because the geometry of surface of metal can modify the local electric field

distribution of emitter), the work function and the energy band structure of emitter (because the

matching between emitter and vacuum induces the coupling of the energy band of the emitter

and vacuum potential barrier). However, most of field emission devices can be approximately

regarded as the decoupling between different directions, by following the previous assumptions.

The main issue is then to find out the relationship between the emission current and external

field and the energy distribution of the electrons. For this, cold field electron emission (CFE)

theory involves calculation of the escape probability1 D for an electron approaching the emitter

surface in a given internal electronic state, and then perform summation over all occupied

states to give the emission current density J . Hence, the potential coupling between different

directions can be ignored and, therefore, the problem of transmission coefficient can be reduced

to the one-dimensional Schrödinger equation.

Lets consider E as the total energy, relative by to some arbitrary zero, and K the kinetic

energy. Therefore, the total energy value at the conduction band is Ec and at the top of the

potential energy step is E0. The local well depth is denoted by χc = E0 − Ec and the work

function φ = E0 − EF , where the total energy of the topmost filled state relative to Ec at 0K

is the Fermi energy EF , as illustrated by fig. 4.1. The energy relative to the conduction band

base, for a free-electron model, is the kinetic energy in nature as K = E − Ec. Thereby the

total electron energy relative to the Fermi level, ε = E − EF , and the Fermi kinetic energy is

KF = EF − EC . After all these definitions, it is clear that such kinetic electron energy K and

1Also called transmission probability or tunneling probability.
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Figure 4.1: Electron energy diagram in the context of Sommerfeld model.

ε are related by

K = E − Ec = (E − EF ) + (EF − Ec) = ε+KF (4.1)

and E and ε are related by

E = E0 + (EF − E0) + (E − EF ) = E0 − φ+ ε . (4.2)

In the Sommerfeld model, the total energy summation is particularly straightforward, with the

parallel p and normal n component equation to the emitter surface. Any of these components

can be used to describe the electrons energy in a CFE approach. As we will show below we will

mainly work with the parallel-energy component2. In a free-electron model, the component of

electron momentum parallel to the emitter surface may be conserved because its solutions are

applicable inside the emitter, in the barrier region and in the vacuum. For motion normal to

the surface we associate En given by En = E −Kp, where En is the normal energy, Kp and En

are the eigenenergies for the parallel and normal motion, respectively. So, from Eq. 4.2,

En = E0 − φ+ ε−Kp ≡ E0 − Vh (4.3)

where Vh is called the unreduced barrier height (barrier height when there is no external electric

2When we say parallel-energy or normal-energy component, we refer to the energy associated to the compo-
nent of electron momentum to the emitter surface.
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field applied) as,

Vh ≡ φ− ε+Kp . (4.4)

with, (
∂Vh
∂ε

)
Kp

= −1 ,

(
∂Vh
∂Kp

)
ε

= 1 . (4.5)

Based on the ‘T-type’ energy-space diagram for a free-electron metal conduction band, as

shown in figure 4.2, and with suitable approximations we will can the electron current density

equation.

Figure 4.2: ‘T-type’ energy-space diagram for a free-electron metal conduction band. The
vertical axis is the total energy ε and the horizontal axis is the component Kp of the kinetic
energy parallel to emitter surface. This scheme is from Forbes’s reference [114]. The heave
shaded region, a triangle of side-length df

√
2 where df defines the decay width, is where the

tunneling electrons drawn from. This because one rough requirement for Eq. 4.30 (see below)
to be valid is that KF > dF

√
2.

The horizontal axis represents the parallel component Kp of the electron kinetic energy while

the vertical axis represents the total electron energy. The label F represents a state on the

emitter surface with total energy E = EF (i.e. K = KF or ε = 0). On the diagrams, one can

draw a region (K > 0 and Kp ≤ K) where solutions of the Schrödinger equation can be found:

each element in this region (dotted area) represents a class of equivalent solutions that (for a

free-electron model) have identical properties with respect to the electron emission.
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Let us denote Z as the electron current density crossing a surface in space inside the free

electron metal. So, as shown in the diagram (figure 4.2), the contribution d2Z to Z that comes

from the energy-space element dKpdKn is [113, 114]

d2Z = zsfdKpdKn = zsfdKpdε (4.6)

where f is the occupation probability for the states in question and zS is a universal constant

inherent in Sommerfelds work [115], given by

zs = 4πem/h3
p ≈ 1.618311× 10611Am−2eV −2 (4.7)

The contribution d2J to the emitted electron current density (ECD) J is

d2J = Dd2Z (4.8)

where D is the electron escape probability. It follows that J is given integrating over the total

energy distribution as,

J = zs

∫ ∫
fDdKpdKn (4.9)

and,

J = zs

∫ ∫
fDdKpdε . (4.10)

In both cases, the double integral is taken over the domain of energy space where occupied

electron states exist. As we are considering the thermodynamic equilibrium conditions, f is

the Fermi-Dirac occupation fFD and depends only of ε. So, the integral 4.10 reduces to

j(ε) = zsfFD

∫
DdKp (4.11)

J =

∫
jdε (4.12)

where j(ε) is the total energy distribution of the emitted electrons. Now it is necessary to

approximate D as a suitable function of ε and Kp, as we will show below.
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4.2.2 Gamow Exponent - Approximation of the Escape Probability

The Schrödinger equation in the x direction (perpendicular direction to the emitter) is,

− ~2

2me

d2ψinc
dx2

= Exψinc for x ≤ 0 (4.13)

− ~2

2me

d2ψtra
dx2

+ Vbψtra = Exψtra for x > 0 (4.14)

where ψinc and ψtra stand for the incident and transmitted wave function, respectively, Vb is

the potential energy for the emitted electrons, me is the electron mass and ~ = h/2π where h is

the Planck constant. Here, x = 0 represents the edge of the Sommerfeld well. If Vb is assumed

to be the triangular barrier, Vb = Vh− eFx, one can solve Schrödinger’s equation exactly [112].

However, for similar barrier shapes, extensive mathematical research from the early 1800s

onward still did not find out a simple exact solutions for such Schrödinger equation. Thus,

approximate solutions have been sought and a large mathematical work exists on Jeffries-

Wentzel-Kramers-Brillouin (JWKB)-type solutions [112].

The JWKB method is a mathematical method for finding approximate solutions of linear

differential equations with spatially varying coefficients in mathematics physics. It is often

used for a semiclassical calculation in quantum mechanics in which the wave function is written

as an ansatz of an exponential function, and semiclassically expanded. Either the amplitude

or the phase is taken to be slowly changing. For most electrons, emitted in a CFE regime, the

tunneling barrier is sharp and strong. This means that the most appropriate correct JWKB-type

formula for the escape probability is the Landau and Lifschitz formula defined as [116, 117, 118],

D = P exp
[
−G(V

′

b )
]

(4.15)

where P is a ‘tunneling pre-factor’ and G(V
′

b ) is the so-called JWKB exponent or even Gamow

exponent,

G(V
′

b ) = ge

∫ √
V
′
b dx , (4.16)
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integrated between the classic turning points (see fig. 4.3). The JWKB constant for an electron

is ge ≡ (8m)1/2/~ ∼= 10.24634 eV 1/2 nm−1[114] is a constant for electron tunneling. The pre-

factor P is presumed varying slowly with the barrier height Vh in comparison with exp
[
−G(V

′

b )
]

and also it may differ only a little from unity [114, 112]. In practice sets P = 1 so,

D ≈ exp
[
−G(V

′

b )
]
. (4.17)

As soon as En is at the the Fermi level EF , consequently Vh = φ and G(V
′

b ) can be Taylor-

expanded as,

G(V
′

b ) = G(φ+ δVh) = G(φ) +
δVh
dF

+ ... , (4.18)

where d is a parameter with dimensions of energy called the decay width [119],

d−1
F =

(
∂G

∂Vh

)
F

. (4.19)

Due to the considered assumptions, the standard CFE theory uses only the linear term [114, 112]

so the Eq. 4.18 can be written,

G ≈ GF +
δVh
dF

(4.20)

where GF = G(Vh = φ) = G(ε = Ep) and the escape probability takes the form,

D(Vb) ≈ exp

(
−GF −

δVh
dF

)
≈ DF exp

(
−δVh
dF

)
, (4.21)

where DF = exp(−GF ). By the Eq. 4.4 and Eq. 4.5 we can express δVh in terms of ε and Kp,

such that,

δVh =

(
∂Vh
∂ε

)
Kp

δε+

(
∂Vh
∂Kp

)
ε

δKp = −δε+ δKp . (4.22)

So, when we expand D relative to the F state we can write,

δVh = −ε+Kp (4.23)
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and therefore

D ≈ DF exp

(
ε

dF

)
exp

(
−Kp

dF

)
. (4.24)

It is valid to emphasize that this result has been proved only for a free-electron model and

usually will not be exactly valid for more-advanced models.

4.2.3 Emission Current Density Equation

Finally, once D was expressed in terms of ε and Kp, we used the approximation 4.24 into Eq.

4.11 such that,

j(ε) ≈ zsfFDDF exp

(
ε

dF

)∫ KF +ε

0

exp

(
−Kp

dF

)
dKp (4.25)

which is an integral in energy space over the horizontal axis in fig.4.2 from Kp = 0 to Kp =

K = KF + ε. From this simple integrations one gets

j(ε) ≈ zsfFDDFdF

[
exp

(
ε

dF

)
− exp

(
−KF

dF

)]
. (4.26)

For a metal the conduction band said as ‘deep’, that means KF is significantly greater than

dF , such that we may neglect the exponential term exp
(
−KF

dF

)
in Eq. 4.26, what leads to the

form,

j(ε) ≈ zsfFDDFdF exp

(
ε

dF

)
. (4.27)

So, the emission current density J is obtained by integrating Eq. 4.12. This integration is over

up the vertical axis of the diagram shown in fig. 4.2. At 0 temperature, fFD = 1 for ε = 0 and

fFD = 0 for ε > 0, so the states contributing, in principle, to the zero-temperature emission

current density are those in the large shaded triangular domain in the fig. 4.2. Thus,

J ≈ zsdFDF ×
∫ 0

−KF

exp

(
ε

dF

)
dε (4.28)

≈ zsd
2
FDF

[
1− exp

(
KF

dF

)]
, (4.29)
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and as KF is significantly greater than dF (the same approximation as in Eq. 4.26), we finally

obtain

J ≈ zsd
2
FDF . (4.30)

Results for specific barrier shapes are obtained by deriving values for the corresponding Gamow

exponents. The elementary triangular barrier has a special status because there is a simple an-

alytical result to which formulae for other quasi-triangular barriers can be related by correction

factors.

For a typical elementary triangular barrier, the vacuum potential barrier, Vb = Vh − eFx =

φ− ε+Ep, by using the JWKB method and notice that GF = G(ε = Ep) (i.e., height for zero

applied field F ), the Gamow exponent is given by (Eq. 4.16),

Gel =
bφ3/2

F
(4.31)

where b is the second Fowler-Nordheim constant, b ≡ (2/3e)ge = (4/3)(2m)1/2/e~p ∼= 6.830890

eV −3/2 V nm−1 [114].

It follows, from Eq. 4.17, 4.19 and 4.31, that

Del
F = exp

(
−bφ3/2/F

)
(4.32)

delF = (2/3)b−1φ−1/2F . (4.33)

where the label ‘el’ is related to the triangular elementar barrier. Using the definition of zs (Eq.

4.7) and substituting the second FN constant b into Eq. 4.33, one is able to find the remaining

part of the emission current density J (Eq. 4.30)

zs(d
el
F )2 = aφ−1F 2 (4.34)
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where a is the ‘first Fowler-Nordheim constant’[114],

a ≡ e3/8πhp ∼= 1.541433× 10−6AeV V −2 . (4.35)

Then, the emission current density for an elementary barrier, at 0 temperature, is

Jel = aφ−1F 2exp
(
−bφ3/2/F

)
. (4.36)

However, since the electron emission arises at the tip of the emitter, we consider an electron

inside the metal seeing a constant (zero) potential, which induces effectively the image poten-

tial near the metal surface from classical electrodynamics. Such barrier, which considers this

correlation-and-exchange effects, is known as Schottky-Nordheim (SN) barrier, assuming its

standard form as,

Vb = φ− eFx− e2

16πε0x
(4.37)

where, eFx is the electrostatic term and the term e2/16πε0x models the correlations-and-

exchange effects by a classical image potential energy, as figure 4.3 shows. Due to the new term

in the SN barrier, two special elliptic correction functions, νSN and τSN , arise when the simple-

JWKB method is applied to solve the Schrödinger equation approximately [119], such that,

GSN = νSNG
el = νSNbφ

3/2/F (4.38)

and, consequently, the escape probability is written as,

DSN
F = exp

(
−νSNbφ3/2/F

)
(4.39)

and

dSNF = τSNF delF (4.40)

where

τSNF ≡ νSN +
2

3
φ

(
∂νSN
∂φ

)
. (4.41)
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Figure 4.3: Potential energy experienced by an electron tunneling, the Schottky-Nordheim
tunneling barrier. when a model potential energy goes strongly negative as x tends to zero, and
dips below the conduction-band base for x < xc, and therefore for such interval VB = Vh − χc.

Then, the resulting form of the Fowler-Nordheim equation is written as,

J = aφ−1F 2τ−2
F exp

(
−νSNbφ3/2/F

)
(4.42)

In the next sections we will discuss the importance of the functions νSN and τSN .

4.2.4 Approximations for the Special Elliptic correction functions

In this section we are going to report a good approximation for the correction functions that

appear in the Eq. 4.42, due to the consideration of the Schottky-Nordheim (SN) barrier. As

describe in the previous section, Fowler and Nordheim published their seminal paper on CFE

theory but they knew that the triangular tunneling barrier was physically unrealistic. The

SN barrier describes better the tunneling phenomenon, but for this barrier the Schrödinger

equation has no exact analytical solutions. From JWKB-approximation method the functions

νSN and τSN have been derived which are purely mathematical definitions that depend only on
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a single variable y, such that

νSN(y) = (1 + y)(1/2)[E(m)− yK(m)] (4.43)

where m = 1−y1/2
1+y1/2

and y =
(

1−m
1+m

)2
=
(

e3

4πε0
F
V 2
h

)
. E(m) and K(m) are well-know complete

elliptic integrals [112],

E(m) =

∫ 1

0

(1− z2)(−1/2)(1−mz2)1/2dz (4.44)

K(m) =

∫ 1

0

(1− z2)(−1/2)(1−mz2)−1/2dz . (4.45)

An important contribution came by Forbes[120], showing that the correction factor obeys the

differential equation,

y(1− y)
d2νSN
dν2

SN

− 3

4
νSN = 0 (4.46)

by the series solution

νSN(y) ≈ 1− y +
1

6
y ln(y) . (4.47)

and

τSN(y) ≈ 1− 1

9
y +

1

18
y ln(y) . (4.48)

In CFE theory y has been the Nordheim parameter y, such as

y ≡ ∆s

Vh
. (4.49)

∆s = cF 1/2 was shown by Schottky [121] as being amount in energy by which the top of the

image-potential- reduced barrier has been lowered from Vh for a field F (see the fig. 4.4).

Therefore we may write,

y =
cF 1/2

Vh
. (4.50)

Forbes and Deane [116, 122, 119, 123] have discussed this point in details and showed that, from

mathematical and physical reasons a good approximation for y2 ≡ f , νSN ≡ νSN(y2) ≡ νSN(f)

νSN(f) ≈ 1− f +
1

6
f ln(f) . (4.51)



48 Chapter 4. Fowler-Nordheim Theory

-eFx

E

x

metal vacuum

Vh

Vb= h -eFx -e2/16 x  

Vb=0

xcx = 0

y Nordheim parameter

Figure 4.4: Illustration of the SN barrier.

The parameter f was introduced by Forbes [120], named ‘scaled barrier field”, which is the

ratio of the electric field that defines a tunnelling barrier to the critical field needed to reduce

barrier height to zero, written as,

f =
F

FR
=
c2F

V 2
h

(4.52)

where FR = V 2
h /c

2 is the field needed to reduce a barrier height from Vh to zero. When Vh is

the local work function φ, then FR becomes F SN
φ , at which the SN barrier for a forward-moving

Fermi-level electron vanishes.

The approximation 4.51 outperforms all earlier approximations of equivalent complexity [124]

and gave, for the first time, a simple and reliable algebraic approximation for ν in the standard

FN-type equation. Also, Forbes [120] has defined an important physical quantity, f , which

have introduced physical meaning into the mathematical assumptions to determine the form of

νSN .

We have been considering only νSN because τSN will be grouped together with another correc-

tion factor into the pre-exponential corrector factor, λ, defined below.
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4.3 Large Area Field Emitters

For the n-th individual emitter of a large-area field emitter (LAFE), it is possible to associate

a local characteristic macroscopic field enhancement factor (FEF), γn, that represents how

the characteristic field Fn at its apex, if electrostatic interaction effects (usually referred to as

shielding)[19] are negligibly small, is related to the applied electrostatic field FM , i.e.,

γn ≡
Fn
FM

. (4.53)

Thus, γn may depend on the gap length between the emitter and counter-electrode. For CFE

applications, the interest arises when the gap length is much greater than the maximum height

of the most protruding emitter. In the case, γn depends only on the geometry of the sys-

tem[1,16,17]. For large-area emitters formed by multiwall CNTs, Bonard et al.[6] showed that

only the sites with the highest characteristic macroscopic FEFs contribute to the emitted cur-

rent. This aspect allows one to define a characteristic macroscopic FEF for the LAFE, γc, when

assuming that the characteristic point C is formally taken at the apex of the emitter with the

highest local apex FEF. We adopt this definition in the present work. Such macroscopic FEF

is an important parameter that should be extracted experimentally because high γc values may

indicate low turn-on field electron emission in the low applied electrostatic field regime.

The macroscopic (or LAFE average) emission current density JM and the related parameters

are then defined via,

JM = αnJc = αfλcJkc (4.54)

where αn is the notional area efficiency, i.e., the ratio An/AM , where An is the notional area and

AM is the whole macroscopic area (or “footprint”) of the LAFE. The quantity αf is the formal

area efficiency, which corresponds to the ratio Af/AM , where Af is the formal area [125, 30, 126].

In addition, Jc and Jkc correspond to the characteristic and kernel characteristic local current

densities, respectively. These quantities are related by Jc = λcJkc, where λc is the characteristic

pre-exponential correction factor and it is not known for the present CFE experiments [116,

126]. This pre-exponential correction factor likely depends on the detailed electronic structure
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of the material, the temperature, and the integration over the electronic states [116]. The

parameter An is an estimate of the geometrical area that significantly emits electrons; however,

the parameter extracted from a properly analyzed experimental measurement via, for example,

an ordinary FN plot of type ln (JM/F
2
M) vs 1/FM [28], is Af , which is different from An when

λc is different from unity [125]. The best estimate is that λc lies in the range of 0.005 < λc < 11

[28]. For convenience, we set λc = 1 for all simulations. The called Kernel current density for

the SN barrier was introduced by Forbes [126] as,

Jkc = aφ−1F 2
c exp

(
−νSNbφ3/2/Fc

)
. (4.55)

where Fc is the local characteristic field. Because that all theoretical uncertainties associated

with prediction of Jc is accumulated into the parameter λc, J
SN
k can be calculated exactly.

Then, the Eq. 4.54 written as

JM = αFλcφ
−1F 2

c exp
(
−νSNbφ3/2/Fc

)
(4.56)

is considered an FN-type equation because is ‘technically complete’, once it contains formal

correction factors that are defined in such a way that all physical effects relevant to the depen-

dent variable in use are encompassed within the equation. Fields, current densities, corrections

factors and related parameters vary with position on an emitter and LAFE surface. The so-

called characteristic values related to some specific position that is considered characteristic of

the emitter and/or of the LAFE. We notice that one must be attentive when the quantities

are the characteristic value of a single emitter/site or a characteristic value of the LAFE. As

used before to define the LAFE, each γn is the characteristic FEF for a single emitter/site and,

among the all emitter/sites the one which is the maximum FEF of the LAFE is labeled by

characteristic of the LAFE. Thus, the Jc showed in the Eq. 4.54 is the emission current density

associated to highest FEF of the LAFE.

So, considering that γc = FC/FM , if one puts γc into Eq. 4.42,

JM = aφ−1γ2
cF

2
Mαf exp

(
−νSNbφ3/2/γcFM

)
(4.57)
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ln(JM/F
2
M) = ln(C)− νSNB

FM
(4.58)

where C = aφ−1γ2
cαf , but it may depends on the other correction factors and B = bφ3/2/γc.

The slope SSN of the FN plot 4.58 can be written as [126]

SSN =
∂ [ln(JM/F

2
M)]

∂ [1/FM ]
= −σtB (4.59)

where the slope correction factor σt depends on various individual contributing factors which

for our considerations is given by

σt = −∂ [ln(C)]

∂[1/FM ]
−
[
νSNB +

1

FM

∂ [νSN ]

∂[1/FM ]
B +

1

FM

∂ [B]

∂[1/FM ]
νSN

]
. (4.60)

or, dividing for 1/βF ,

σt = −∂ [ln(C)]

∂[1/FM ]

1

B
−
[
νSN +

1

FM

∂ [νSN ]

∂[1/FM ]
+

1

BFM

∂ [B]

∂[1/FM ]
νSN

]
. (4.61)

As a common use of FN plots is to estimate the characteristic FEF γc, by Eq. 4.59 it is obtained

by

γc = −σtbφ
3/2

Sfit
(4.62)

where Sfit is the slope estimated from the FN plot. To obtain a predicted value for σt, one

consider ln(C) and B constant by 1/FM , and to assume that no series-resistance-related effects

occur. Forbes et al. [127] call this the basic approximation, and show that equation Eq. 4.61

then reduces to

σt = νSN − Fc
∂νSN
∂Fc

(4.63)

As we have assumed that tunnelling takes place through an SN barrier, then this is the orthodox

approximation specified below and σt becomes a function st (see below). The modern FE

literature often makes the elementary approximation of taking st = 1, once Forbes [126] shows

that st ≈ 0.95. But, as it was shown by Forbes [123] if st is not considered the FN plot shows

non-linearity therefore directly affecting the estimate of the emission area.
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For many years, the only simple test for consistency of FE data with theory has been the

qualitative one of whether an experimental FN plot is effectively straight. However, this crite-

rion is not appropriate because many nonorthodox emission data may have a sufficient linear

dependency in the FN plot.

4.4 The Orthodox Emission Hypothesis

The orthodox emission hypothesis is a set of physical and mathematical assumptions, proposed

by Forbes [126], that permit well-specified analysis of measured current-voltage data related to

CFE.

Real physical emission situations are never exactly orthodox, but some real situations are

expected to be very nearly orthodox. In particular, emission from a stably mounted, metal,

emitter of moderate-to-large apex radius (larger than 10nm), with a good conducting path

to the high-voltage supply, and emitting under stable vacuum conditions, is expected to be

very nearly orthodox. Some other emitters complications can occur in real emission situations,

but also may be disregarded, in some appropriate conditions, such as voltage drop in the

measuring circuit; leakage currents; patch fields; field-emitted vacuum space charge; current-

induced changes in emitter temperature; field penetration and band-bending; strong field fall-

off; quantum confinement associated with small-apex-radius emitters [128]; and field-related

changes in emitter geometry or emission area or local work function.

Such assumptions, that involve the voltage difference between the emitting regions and a sur-

rounding counter-electrode (all parts of which are at the same voltage) can be treated as uniform

across the emitting surface and equal to the measured voltage Vm; the measured current im

can be treated as equal to the device current id, and as controlled solely by CFE at the emit-

ter/vacuum interface; emission can be treated as if it involves deep tunnelling through an SN

barrier, with the device current id described by a related FN-type equation in which the only

quantities that depend (directly or indirectly) on the measured voltage Vm are the independent

variable in the equation and the barrier-form correction factor; and the emitter local work
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function φ is constant (and constant across the emitting surface), and has its assumed value.

Because of theses assumptions the correction physical parameters, such as λc, AF and conse-

quently αF can all be treated as constants.

Forbes [126] has realized that from 1960 to 1990, nearly all literature analyses of measured

CFE current-voltage data, in practice, assumed the orthodox emission hypothesis. However, as

noted earlier, if emission is not physically orthodox, then orthodox data-analysis methods may

generate spurious values for extracted physical parameters.

Based on the previous assumptions, Forbes has calculated [126], for any given emitter tempera-

ture a range of reasonable f values. For that, lets write the Eq. 4.55 as function of fc = Fc/FR,

such that,

Jkc = θf 2
c exp (−ν(fc)η/Fc) (4.64)

with the slope of an FN plot of type ln[Jkc]× f−1
c being

Sfc = −ηs(fc) (4.65)

where s(fc) is the function (expressed here as a function of fc) that is the slope correction

function for the SN barrier[116]. The called work-function-dependent parameters η(φ) and

θ(φ) can be defined by

η(φ) ≡ bφ3/2

FR
= bc2φ−1/2 (4.66)

and

θ(φ) ≡ aφ−1F 2
R = ac−4φ3 (4.67)

The values of η(φ) and θ(φ) are shown in table 4.1

With the orthodox emission hypothesis, all sensible independent variables are linearly related

to each other. Then, if a given dataset of a LAFE is plotted as function of F−1 rather than

f−1
c , then the slopes of the two plots are related by

SF = Sfc
d(f−1

c )

d(F−1)
= SfcFR (4.68)
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As FR = Fc/fc and Eq. 4.65,

SFc = −ηs(fc)
Fc
fc

(4.69)

This applies to a specific field Ft at which the tangent to the theoretically predicted plot is

parallel to the fitted line with slope Sfit, so,

Sfit = −ηst
Ft
ft

(4.70)

where st ≡ s(ft). Therefore, finally one is able to extract f extr that relates to the experimental

value (F−1)expt is

f extr =
−stη

Sfit(F−1)expt
(4.71)

At sufficiently low f extr values, owing to signal-to-noise issues in measuring instruments, the

resulting emission currents may be too low to be measured. At sufficiently high f extr values,

the local current density may (for many emitter materials) be high enough to cause significant

emitter heating, and consequent emitter failure (or, alternatively, be high enough to induce

vacuum breakdown and emitter failure by some other mechanism). Table 4.1 shows the param-

eters FR, η and θ for an SN barrier of zero-field height φ, and the corresponding f extr values

that set the ‘apparently reasonable’ range flow ≤ f extr ≤ fup, and the ‘clearly unreasonable’

ranges f extr < flb and f extr > fub.

φ (eV ) FR (V nm−1) η θ (Am−2) flb flow fup fub

4.5 14.06 4.3989 6.77× 1013 0.10 0.15 0.45 0.75
4.0 11.11 4.9181 4.76× 1013 0.105 0.16 0.48 0.79
3.5 8.51 5.2577 3.19× 1013 0.11 0.17 0.51 0.85
3.0 6.25 5.6790 2.01× 1013 0.12 0.18 0.54 0.91

Table 4.1: The dependence of FR, η, θ and f values on work function φ[126], considered in this
thesis.

The ‘apparently reasonable’ and ‘clearly unreasonably’ f ’s range shows in the table 4.1 was

defined by Forbes [126] based on mainly by the experiments carried out in the 1925-1975

period. This because the emitters corresponding most closely to the physical assumptions

of the orthodox emission hypothesis are the traditional ones, metal, single-tip field emitters
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of relatively large apex radius, used in arrangements with a low-resistance path to the high-

voltage supply. This means that one can appeal to the large body of experimental work in such

mentioned period.



Chapter 5

Large-area field emitters: the

dependence between area of emission

and the applied field

With a large-area field electron emitter, the area of emission is expected to be dependent of the

applied field. One possible explanation for this behavior is the statistical distribution of the local

field enhancement factors, as a consequence of an irregular surface’s morphology of the LAFE.

In this section, we present a simple and more general theory for extracting the scaled barrier

field, f , by considering the dependence of the formal area of emission of conducting LAFEs

with an applied field. In our model, the local FEF of LAFE sites are exponentially distributed,

which is consistent with thin film electron emitters. As a byproduct of technological relevance,

our results show that general effective f values extracted from linear Fowler-Nordheim (FN)

plots are outside of the “experimentally reasonable” range of values for physically orthodox

emission, when the area of emission varies significantly with the applied field. Thus, a more

general criterion for detecting and interpreting nonorthodox field emission is proposed and can

be applied to any distribution of local FEFs in conducting LAFEs.

This chapter is based on reference [27]:

56
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de Assis, T. A. and de Castro, C. P., Extracting scaled barrier field from experiments with

conducting large-area field emitters: Considerations by inclusion of the dependence between

area of emission and the applied field, Journal of Vacuum Science & Technology B, 35, 052201

(2017).

5.1 The dependency of the formal area of emission on

the applied field and LAFE model

A LAFE can be treated as an array of emitters or emission sites, each with its own charac-

teristics, that stand upright on a flat plate [129]. A more realistic situation that includes the

nonuniformity of the LAFE geometry requires a distribution of local FEFs [130, 131, 132].

Chemically etched tungsten tips or Spindt-like emitters often have poor tip-to-tip reproducibil-

ity [132]. To incorporate this effect, de Assis introduced a dimensionless LAFE parameter ω0

defined by [26, 29]

ω0 ≡ 1 +
∂ ln (αf )

∂ ln (JkC)
. (5.1)

We interpret this parameter as an indirect measure of the dependence of the LAFE formal area

Af on FM . If there is no field dependence, then ω0 = 1, and a linear dependence between JM

and JkC is expected [see Eq. (4.54)]. Recently, for a Gaussian distribution of local FEFs [29]

with an appropriate range of applied electrostatic fields within the conducting materials (i.e.,

1V/µm ≤ FM ≤ 10V/µm), JM was shown to vary as JM ∼ (JkC)ω0 . This power law dependence

can be interpreted by assuming that the field emission predominantly originates from sites with

characteristic FEFs γC and ω−1
0 γC , ω0 > 1 [26, 29]. Then, parameter ω0 provides information

regarding the characteristic FEF of the n-th site of the LAFE that contributes significantly to

the field emission beyond site “C” with the maximum FEF for regimes with a high applied

electrostatic field.

Assuming that two sites in the LAFE predominantly participate in the emission within the

corresponding range of the applied electric field, the macroscopic emission current density, JM ,
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can be calculated as follows:

JM ≈

2∑
n=1

Jnkcσ
n
fA

n
s

AM
, (5.2)

where σnf is the formal area efficiency, Ans is the site area (i.e., the “footprint” area associated

with the individual emitter or emission site), and Jnkc is the kernel characteristic current density

of the n-th site of the LAFE. If ns is the number of sites of the LAFE and A1
s = A2

s = ... = Ans ,

then the macroscopic area of the LAFE can be written as AM = nsA
1
s = nsA

2
s.

Considering that γ1 = γC and γ2 = rγ1 when 0 < r < 1 and that the emission from all sites can

be treated as deep tunneling through an SN barrier, the kernel characteristic current densities

of sites 1 and 2 are respectively given as follows:

J1
kC ≈ aφ−1 exp (η)F

η/6
R (γCFM)κ exp

[
−bφ3/2/ (γCFM)

]
, (5.3)

and

J2
kC ≈ aφ−1 exp (η)F

η/6
R rκ (γCFM)κ exp

[
−bφ3/2/ (γCFM)

]1/r
, (5.4)

where κ ≡ 2− η/6. From Eq.(5.2), it is possible to write:

JM ≈
1

ns

{
σ1
f + σ2

f

J2
kC

J1
kC

}
J1
kC . (5.5)

By inserting Eq.(5.3) into Eq.(5.4), the ratio J2
kC/J

1
kC is given by:

J2
kC

J1
kC

=
aφ−1 exp (η)F

η/6
R (γCFM)κ

a1/rφ−1/r exp (η/r)F
η/6r
R (γCFM)κ/r

(
J1
kC

)1/r−1
. (5.6)

At a high applied field limit and considering σ2
f >> σ1

f , Eq. (5.5) can be approximated by:

JM ≈
1

ns

{
σ2
f

J2
kC

J1
kC

}
J1
kC . (5.7)

The contribution to the macroscopic current density under the approximation given by Eq. (5.7)

clearly originates from the sites with FEF γ2. By using Eq. (5.6) in Eq.(5.7), this conclusion
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is equivalent to:

JM ≈
JM0

(JkC0)1/r

(
J1
kC

)1/r
, (5.8)

where JM0 and JkC are given by:

JM0 = n−1
s σ2

far
κφ−1 exp (η)F

η/6
R (γCFM)κ , (5.9)

and

(JkC0)1/r = a1/rφ−1/r exp (η/r)F
η/6r
R (γCFM)κ/r . (5.10)

Then, by using the definition of ω0 ≡ d ln (JM)/d ln (J1
kC), we identify ω0 = r−1. Clearly, in the

limit of a high applied field [i.e., when the approximation given by Eq. (5.7) is valid], ω0 > 1.
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Figure 5.1: (Color online) (a) Ordinary FN plots simulated for the different local work functions
considering that the local FEF sites in the LAFE are exponentially distributed, i.e., ρ(γ) =
exp(−ξγ) with ξ = 1/80, and γ ∈ [50, 1100], as shown in the inset. The macroscopic current
density was computed using the ratio between the integration of the site current [see Eq. (5.11)]
over the entire LAFE and the macroscopic area (or ”footprint”) of the LAFE, AM . (b) Effective
ω0 values were evaluated by using Eqs. (5.2) and (5.1) as a function of 1/FM , for several local
work functions.

In this work, we assume that the LAFEs have an exponential distribution of site-characteristic

FEFs, i.e., ρ(γ) = exp(−ξγ), where ξ is the characteristic decay rate. This distribution is con-

sistent with previous experimental works that have found, using scanning anode field emission

microscopy, exponential distributions of FEFs in carbon-based thin film electron emitters [131].
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This type of distribution has also been found in theoretical works that considered the tails of the

distributions obtained by assuming that the surface geometry of the LAFE was characterized

by a Hurst exponent [26]. Moreover, in our simulations, we used ξ = 1/80 and γ ∈ [50, 1100].

This value of ξ ensures that the n-th LAFE site has a high probability of having a characteristic

FEF γn < γC . The values of γ are consistent with other LAFE-based technologies [16]. The

emission current associated with an individual n-th site has been obtained as follows. The local

emission current density, J , is integrated over the area associated with the emission site As

(i.e., the “footprint” associated with the individual emitter or emission site), and the result is

written as follows:

is =

∫
JdA = σfAsJkn, (5.11)

where the formal site efficiency, σf , introduced recently by Forbes and de Assis [133], corre-

sponds to the ratio of Af/As, and Jkn is the kernel characteristic current density for the n-th

site. For the sake of simplicity, we consider that the footprint areas of all sites are the same.

Furthermore, σf is expected to be anti-correlated with the local site FEF, γn. This aspect is

interesting because σf may produce real nonlinearities in the FN plots, similarly to current

voltage characteristics discussed in the experimental work of Lauritsen [134], observed also in

Molybdenum Spindt field emission arrays [135] and theoretically treated in Refs. [136, 137].

5.2 Results and generalization for scaled barrier field ex-

traction

In our simulations, we generate LAFEs formed with 106 sites with σf = 10−14 for γn > 400,

otherwise σf = 10−6. Fig. 5.1(a) shows the ordinary FN plot of type ln (JM/F
2
M) vs 1/FM ,

where JM is computed using the ratio between the sum of Eq. (5.11) over all LAFE sites and

the macroscopic area AM . To compute Jkn, we used the Schottky-Nordheim (SN) barrier for

the zero-field height φ = 3.0, 3.5, 4.0 and 4.5 eV [see Eq. (2.2) of Ref.[126]]. Two regions with

nearly constant and different slopes, which is characteristic of a kinked-FN plot, were observed.

The theoretical FN plot stops at the value of 1/FR, where FR corresponds to the reference
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field necessary to reduce an SN barrier to zero. For φ = 3.0, 3.5, 4.0 and 4.5eV, the FR values

are 6.25, 8.51, 11.11, and 14.06 V/nm, respectively [126]. However, the experimental plot is

expected to stop before 1/FM to be reduced to 1/FR because the emitter will melt or explode

[125]. Thus, we consider a more realistic situation in which, for a given LAFE, the maximum

local electric field of a site cannot surpass the values of Fn = γnFM = 0.8FR. This condition

defines the higher limit values to FM in the simulations of the FN plots. We stress that the

conditions imposed here enable one to consider a more simple picture where vacuum voltage

breakdown effects, which may be enhanced at high current densities regime [138, 139], can be

discarded.

In the inset of Fig. 5.1(a), the exponential distribution of ρ(γ) considered in this work is shown.

From Eqs. (5.2) and (5.1), it is possible to compute the effective ω0 as a function of 1/FM for

several local work functions. The results are shown in Fig. 5.1(b). In the lower FM regime, ω0

is close to unity, and Af changes only slightly. However, for high applied fields, ω0 is clearly

higher than unity, indicating that
∂ ln (αf )

∂ ln (JkC)
> 0. In this regime, Af clearly changes with FM .

Despite this, we observe a region of the FN plot exhibiting a nearly linear behavior.

For this range of the applied field, the sites of LAFE with γn = ω−1
0 γC dominates the emission.

These features lead to the following questions: for high effective ω0 values, is the orthodox

emission expected to fail? Can γC be estimated in a more reliable way from a nearly linear

FN plot, even for ω0 > 1? To address these questions, we propose a generalized method for

extraction of the scaled barrier field for situations where ω0 > 1. The orthodoxy test was

developed by Forbes [126] by considering Af constant, as pointed previously. In our case, this

generalization is particularly useful to characterize conducting LAFEs as thin film emitters, in

which the formal area is expected to increase as the applied field increases.

From the n-th site of the LAFE, where γn = ω−1
0 γC , it is possible to define the corresponding

kernel characteristic current density as follows:

Jkn = θω−2
0 f 2

C exp {−ν(fC/ω0)ηω0/fC} , (5.12)
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where θ and η are work-function-dependent parameters defined by θ ≡ ac−4φ3 and η ≡ bc2φ−1/2,

where a [≈ 1.54 × 10−6A (eV V−2)] and b[≈ 6.83 eV3/2 (V nm−1)] are the first and second

FN constants, respectively, and c[≈ 1.199 eV (V nm−1)−1/2] is the Schottky constant. In

addition, fC is the scaled barrier field corresponding to the barrier field FC , which is given by

fC ≡ FC/FR = c2φ−2FC for φ [126]. The definition related to Eq. (5.12) is justified by the

anti-correlation imposed between σf and γn in the following manner: when σf is associated

with FEF site γn (γn < γC) and is sufficiently high compared with σf associated with γC , the

dominant field emission comes from the sites with FEF γn in the high FM regime. This explains

the differences in the slopes of the FN plots shown in Fig. 5.1(a).

For convenience, we use ν(fC/ω0) ≡ νω0 for the simple and accurate approximation (see

Ref.[120]) of the SN barrier [120, 116]

νω0 = 1− fC/ω0 +
1

6
(fC/ω0) ln

(
fC
ω0

)
. (5.13)

Then, for the variables of the FN plot, we write

ln

{
Jkn
f 2
C

}
= ln(θ)− 2 ln(ω0)− ν(fC/ω0)ηω0/fC . (5.14)

From Eq. (5.14), we obtain the slope of the FN plot of type [ln{Jkn/f 2} vs f−1], Sf . Hence,

for simplicity, fC ≡ f , Sf is presented as follows:

Sf = − 2

ω0

u− η
[
sω0ω0 + νω0f

−1u
]
, (5.15)

where the functions u and sω0 are defined as:

u ≡ ∂ω0

∂ {f−1}
, (5.16)

and

sω0 ≡
∂ {νω0f

−1}
∂ {f−1}

. (5.17)

Fig.s 5.2(a), (b) and (c) show the dependence of νω0 , u and sω0 on FM computed using Eqs.
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Figure 5.2: (Color online) Functions (a) νω0 , (b) u and (c) sω0 defined by Eqs. (5.13), (5.16)
and (5.17), respectively, as a function of the applied macroscopic field, FM , for several local
work functions. The insets in (b) and (c) show a magnification of the main panel data for 2
V/µm ≤ FM ≤ 6 V/µm.

(5.13), (5.16) and (5.17), respectively. The results were computed using the FN plots and

ω0 presented in Figs. 5.1(a) and (b). Interestingly, the function νω0 presents minimum and

maximum values that increase as the local work function increases. This justifies the subtler

nonlinear behavior of the FN plot for the lower values of the work functions. Additionally,

the functions u and sω0 present a clear plateau for all work functions considered in this study,

whereas the corresponding FN plots have an approximately linear behavior. Interestingly, in

the quasilinear regions of the FN plots, u ≈ 0, suggesting that ω0 varies slowly with f−1. In

these circumstances, Eq. (5.15) can be approximated as follows:

Sf ≈ −ηsω0ω0. (5.18)

If SF is an effective slope of an ordinary FN plot of type ln (J/F 2) vs 1/F and, given the linear
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dependence between F and f , SF = Sf∂(f−1)/∂(F−1). By using approximation given by Eq.

(5.18), it is possible to obtain

fω0 ≈ −
ηsω0ω0

SF
(

1
F

) . (5.19)

The approximation given by Eq. (5.19) is a generalization for extraction of the scaled barrier

field, including the effects of the variation of Af with FM . Fig. 5.3 shows the results for fω0 after

using Eq. (5.19) and the data from Fig. 5.1 for the high field regime (ω0 > 1) as a function of

the applied electric field. The data used correspond to a nearly linear FN plot in which u ≈ 0.

As we can see, fω0 is outside of the range for “apparently reasonable” orthodox emission [126],

which is consistent with the dependence between Af and FM . In contrast, by using the scaled

barrier field forth ≈ 0.95η/[SF (1/F )] obtained from the orthodox field emission hypothesis

[126], the effective forth values fall approximately within the range of orthodox emission. These

results suggest that a more general criterion for detecting nonorthodox field emission is enabled

by using Eq. (5.19) in high applied field regime.
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Figure 5.3: (Color online) Generalized scaled barrier field, fω0 (hollow symbols), calculated
using Eq.(5.19) and data from Fig. 5.1 as a function of the applied electric field for various
work functions. The results using forth (full symbols) from orthodox emission hypothesis are
also shown. The limits of flow and fup for “apparently reasonable” orthodox emission [126] for
all work functions considered in this study are shown.
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5.3 Discussion of the discrepancies between the slope

characterization parameter, βFN , and the approxi-

mated FEF, γaproxC , extracted from simulated FN plot

data at high applied field regime

Now, we address how γC can be estimated in a more reliable way from a nearly linear FN plot,

for ω0 > 1. From a (JM − FM)-type FN plot, it is possible to define the elementary slope

characterization parameter, βFN (also called the “apparent FEF”). This quantity, which is

used by experimentalists to estimate γC , is given by:

βFN ≡ −bφ3/2/SF , (5.20)

where SF is the extracted slope from an experimental FN plot. If we assume that JM ∼ (JkC)ω0 ,

ω0 is approximately constant in a given range of FM [i.e., u ≈ 0 - see Eq. (5.16)], and st is

the fitting value of the slope-correction function, s for the SN barrier (for an FN plot), then an

approximation of γaprxC for the true FEF γC can be derived from:

γaprxC = −ω0stbφ
3/2/SF = ω0stβ

FN . (5.21)

Table 5.1 summarizes the values of γC extracted from the distribution ρ(γ), and βFN and

γaprxC extracted from the FN plots shown in Fig.5.1 (a) considering the linear behavior in the

limit of a high applied field. In fact, the exact value of st is always unknown, but a good

approximation for metals is 0.95 [126]. As we can see, γaprxC is a good estimation of γC (with

deviations no higher than 12%) for all work functions used. This result supports that the

parameter ω0 should be considered experimentally to correctly interpret the FEFs extracted

from a conducting LAFE when the following conditions are met: (i) the formal area is expected

to change with the applied field and (ii) the effects of the resistance in series in the field emission

device are discarded.
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Some recent experiments have observed a nonlinear behavior in the corresponding current-

voltage characteristics, similarly to that presented in Fig.5.1(a) (see for instance Refs.[140, 141]).

In particular, Popov et al. [142] have implemented experimental methods for determining

emission area parameters (e.g. formal area Af ) from FN plots using several multi-tip emitters

based on CNT and graphene. In addition, by experimental measurements of the macroscopic

emitted current, im, the characteristic current density, JkC , may be estimated. This probably

should be the first step to an indirect measuring of the ω0 parameter defined in Eq.(5.1). Of

course, careful interpretation is necessary since all the theory constructed in this work assumes

that the characteristic point “C” in the LAFE is formally taken at the apex of the emitter with

the highest local apex FEF.

φ (eV) SF (V/nm) βFN γC γaprxC

3.0 -0.0891(2) 398.3 1065.7 983.5
3.5 -0.112(6) 397.2 1057.1 949.5
4.0 -0.1378(3) 396.5 1078.2 955.7
4.5 -0.1651(5) 394.8 1091.7 963.4

Table 5.1: Values of γC extracted from the distribution ρ(γ), βFN , γaprxC and the slopes SF
extracted from the FN plots shown in Fig.5.1 (a). The results are presented for the linear
region of the FN plot in the limit of a high applied field, for various work functions.

5.4 Conclusions

In this work, we consider the dependence of the formal area of emission on the applied field to

provide a more general method for extraction of the scaled barrier field from current-voltage

characteristics. This makes the link between theory of CFE and experiments more strong

for LAFE technologies purposes. The effects of the resistance in series in the field emission

device were not considered in this work. Even under these circumstances, our results suggest

that nonreliable conclusions may appear if the values of the scaled barrier field were extracted

applying orthodox equation in real nonorthodox field emission data. As a consequence, if we

only observe linearity in the FN plots in the high applied field regime and use the elementary

slope characterization parameter βFN ≡ −bφ3/2/SF , we may observe a larger discrepancy in



5.4. Conclusions 67

this quantity compared with real value of the maximum FEF of the LAFE γC . This aspect

leads to the following conclusion: even when the f values extracted experimentally using the

orthodox equation fall approximately within the range of orthodox emission, extracting βFN

may not be conclusive for a properly characterization of LAFE. Therefore, evaluating the ω0-

parameter, which provides information about the dependence of the formal area of emission on

the applied field, is necessary during LAFE measurements.

Finally, if ω0 is near unity, the effect of the relationship between Af and FM is not sufficiently

large to fail the orthodoxy test, once fω0 ≈ forth. Then, the merit of our results is identifying

that a nearly linear FN plot may hide high values of ω0. This allows that a nonorthodox

emission may be masked by the use of the scaled barrier field expression derived from the

orthodox hypothesis. Then, ω0 should be measured before deciding which expression of the

scaled barrier field provides a more careful interpretation of experimental field emission data.

Importantly, this parameter enables a more precise extraction of γC , which is a necessary

parameter for determining if a device is suitable to operate at lower applied field regimes.



Chapter 6

Degradation of a large area field

emitter: from saturation in

Fowler-Nordheim plots to unorthodox

field electron emission

We present a simple model that is able to demonstrate that degradation on the morphology

of a conducting Large Area Field Emitter (LAFE) may cause a kinked behavior formed by

two clear linear regimes before saturation on the corresponding ordinary Fowler-Nordheim

(FN) plot. Importantly, we show that in the nearly linear regime observed, even after the

degradation has been started, spurious values of the slope characterization parameter can be

achieved. This feature is a strong evidence that the changing in the morphology of the LAFE

during the increasing of the applied field can lead to an unorthodox field emission. Our results

show that the effective scaled barrier field extracted from the simulated FN plot in our model

is consistent with those found for Au posts on flexible graphene film, probably justifying the

general mechanism (i.e., field dependent changes in emitter’s geometry) behind unorthodox field

emission observed on current-voltage characteristics of that experiment. Finally, our results

suggest that the transition from the latter nearly linear behavior to saturation regime on FN

68
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plot contains a signature of the morphology of a LAFE before degradation.

6.1 Introduction

Fowler-Nordheim (FN) plot saturation has been justified by several physical phenomenon, such

as internal resistance of the emitters, which lead to the voltage loss (voltage drop)[143, 144,

145, 129], field penetration [146], field-emitted vacuum space charge[147], the transition from

thermionic to field emission[148], and also a voltage-divider effect, due to measurement-circuit

resistance [28, 129]. An important limiting factor for various applications, which includes

electron sources, is the vacuum arcing which is known appears after intense field electron

emission (FE). A commom hypothesis behind this phenomenon is that intense FE leads to

high local electron current densities producing Nottingham heating [149, 150] which leads to

local temperatures close to the melting point of the emitter with evaporation of neutral atoms

[151, 152, 153]. This may occur in single [153] or large-area field emitters (LAFEs) [154]

implying in a change of the related morphology [152, 155]. Actually, the phenomena behind

the degradation of field emitters are not completely understood at present, and several factors

play an important role. For instance, the shape of an emitter may be changed by electrostatic

deflection or mechanical stresses leading to a decreasing of the local field enhancement factor

(FEF). Field evaporation of the emitter may be sometimes the mainly cause of decreasing the

local FEF [156]. Failures during field emission at or near the substrate-emitter contact has been

reported for individual multiwall carbon nanotubes [157]. For a film emitter, the degradation

may be abrupt and sometimes gradual ocurring during initial current-voltage characteristic

tests as well as at constant applied field in long periods [155]. Some works considering multi-tip

emitters reported that the decrease in FEF associated with the degradation may be due to the

failure of individual emitter [155, 156], which can occur already for currents of few hundreds of

nanoamperes per emitter.

The degradation of a field emitter is expected to be reflected on the corresponding current-

voltage characteristics. As a consequence, a non orthodox field emission is expected to occurs
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[126]. For instance, field emission measurements of Au posts grown on exible graphene film by

electrodeposition method [31] confirmed that the extracted scaled field barrier was in a range

“clearly unreasonable” as compered with that expected for orthodox field emission [158]. This

result, still not fully understood, has as a possible explanation the field-dependent changes in

emitter’s geometry [126]. Cahay and collaborators [159] reported different behaviors in the FN

plots from field emission measurements with carbon nanotube fibers (CNFs), as the values of

the fiber tip to anode spacing decreased. Interestingly, the corresponding FN plots presented

saturation features. Their results suggested that some of the sharper features contributing to

FE at the large gap distance were destroyed at largest applied fields, leaving CNFs with lower

FEFs and thereby causing an increase in the threshold for FE. Moreover, this destruction has

been stated to arise from a combination of self-heating effects and ion back bombardment [155].

Also, a multiscale model of FE from CNFs has been developed [162], which takes into account

Joule heating within the fiber and the Nottingham effect at the tip of the individual carbon

nanotubes (CNTs) in the array located at the fiber tip [162, 160].

Motivated by aforementioned results, in this paper we investigate theoretically, by using Monte

Carlo simulations, how degradation of LAFE affects the corresponding ordinary FN plots and

how this degradation is connected with its saturation. Importantly, we show that the degra-

dation may cause a clear nearly linear regime on FN plot before saturation, with smaller slope

as compared with one of the linear regime before the degradation has started. Our results

suggest that degradation in LAFE affects directly the characteristic FEF of the LAFE, γC , as

a consequence of the changing in LAFE’s morphology. Therefore, this linear regime may mask

the degradation and confirm that spurious information of the slope characterization parameter

may be extracted from the FN plot, connecting changing of the morphology of a LAFE with

the non orthodox field emission.

The section is organized as follows. Section 6.2 describes the method to model the degradation

of the LAFEs used in this work. In section 6.3, we discuss the results and section 6.4 presents

our conclusions.
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6.2 Method

In our model, a n-th individual site (emitter) of the LAFE is assumed to be spaced in such way

the electrostatic effects (shielding) between the emitters can be neglected. Furthermore, if the

local work function along the surface of the emitter is assumed to be constant, we associate a

local characteristic FEF, γn = Fn/FM , most likely situated at the apex of the n-th emitter if

the morphology of the site’s surface is consistent with a classical smooth surface. Considering

cold field electron emission (CFE), Fn corresponds to the field defined in the emitters electrical

surface, which determines the barrier through which the field-emitted electrons tunnel.

This characterization parameter, which can be experimentally extracted from current-voltage

characteristics from a LAFE [28, 29, 26] in the case of orthodox emission [126], is a measure of

the sharpness of the system. For technological purposes, it has values ranging typically between

102 and 103. For generality of our results and technological reasons on cold field emission[30,

163, 16], the emitter and counter-electrode are assumed to be sufficient distant, such that γn

become independent of this gap only depending on the geometry of the system. As showed

by Bonard et al.[35], for large area emitters formed by multi-wall carbon nanotubes, only sites

with the highest characteristic macroscopic FEFs contribute effectively to the emission current.

Based on this, one defines the highest FEF of all sites of the LAFE as being the macroscopic

characteristic FEF for the LAFE, γC . The characteristic FEF has technological importance

because high γC-values may indicate an initialization of the field emission at sufficiently low

applied electrostatic field (typically of the order or fraction of few V/µm [160]).

Since the seminal paper on CFE on metal surfaces by Fowler and Nordheim (FN)[164], sev-

eral relevant corrections have been proposed improving the FN theory. Such corrections take

into account important physical effects generating a more realistic description for field emis-

sion through Fowler-Nordheim-type (FN-type) equations[118, 124, 120, 165]. For conducting

emitters with appropriate dimensions (i.e. radius of the emitter no less than 10nm[126]),

and considering the emission described by deep tunneling through a Schottky-Nordheim (SN)

barrier[121, 161] used in the Murphy-Good (MG) theory[167], a technically complete expression

for the characteristic local emission current density, associated to the n-th site, Jn is written as
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Figure 6.1: Exponential, uniform and Gaussian distributions of the characteristic FEFs of the
sites ranging 50 ≤ γ ≤ 1100. The distributions ρ(γ) were simulated considering a LAFE formed
by 106 sites.

follow,

Jn = λnJk,n, (6.1)

Jk,n = aF 2
nφ
−1 exp

(
−νfnbφ3/2/Fn

)
, (6.2)

where Jk,n is a characteristic kernel current density associated to a n-th site [126] and νfn is the

corresponding barrier-form correction factor for the SN barrier[120]. The local pre-exponential

correction factor λn[126, 116] includes various effects known to influence the emission process,

as correct integration over emitter electron states, the influence of emitter’s temperature, the

use of atomic level wave functions and band structure. Currently, the best guess is that λn

lies in the range 0.005 < λn < 11. In the present work, possible field dependence in λn is

disregarded. In this case, our results do not depend qualitatively on what value is assumed

for λn; for convenience we shall set λn = 1 in all simulations presented here. The first and

second FN constants[30] are a=1.541434 × 10−6 A eV V −2 and b=6.830890 eV −3/2 V nm−1,

respectively. Thus, the macroscopic current density JM of a LAFE is the ratio between the

sum over all the local site’s current emitted in and the macroscopic emitters’ footprint area,

such that,

JM =

N∑
n=1

in

AM
, in = σnJnAs, (6.3)
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where N is the total of sites of the LAFE. In this work, we considered a LAFE formed by

N=106 sites. As is the site’s area, AM is the whole macroscopic area of the LAFE and σn is

the notional area efficiency [133], which we kept constant for every site and assumed a typical

value σn = 10−10 (see Ref.[18]).

For a barrier of zero-field height h, Fh is defined as the field necessary to reduce a tunneling

barrier from its zero-field height h to zero. Therefore, as the SN barrier has h = φ, Fφ = c2φ−2

(see Refs. [31] and [33]). By the physical meaning of Fφ, we simulated the mechanism of

morphology degradation in our model as follows: (i) For a specific applied field, FM , we define

a maximum local field for the site being a fraction of the reference field, i.e., δFφ, with 0 < δ < 1;

(ii) As soon as a local field Fn exceeds δFφ, a new value for Fn (smaller than δFφ) is randomly

selected. By this procedure, we were able to include in our simulation the effect of degradation

of the LAFE due to high local electrostatic field and count the number of sites degraded. This

procedure allows us to compute the fraction of degraded sites in the LAFE and it dependence

with the applied field.

Based on experimental analyzes of FEF’s distribution, via scanning anode field emission mi-

croscopy (SAFEM) [132, 7], we assume three different distributions of site-characteristic FEFs

for the LAFE: an exponential distribution ρ(γ) = exp(−ζγ), where ζ is the characteristic de-

cay, a Gaussian distribution and an uniform distribution, as shown in Fig.6.1. For exponential

distribution, we have used ζ = 1/80 (see Ref.[43]). The Gaussian distribution was truncated to

ensure the range γ ∈ [50, 1100], following the function ρ(γ) = [A/(w
√
π/2)] exp[−2(γ−γ̄)2/w2],

where A ≈ 5002, w ≈ 222 and γ̄ ≈ 550.

6.3 Results and Discussion

As a consequence of the degradation of the LAFE, a saturation is observed in the ordinary FN

plot, as shown in Fig.6.2. As we can see for an exponential distribution of the FEFs and δ = 0.4,

the saturation in the FN plot arises for different values of the work function. For smallest values

of φ (i.e. for φ = 3.0eV and 3.5eV ), the effects of the degradation of the LAFE over the FN-plot
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Figure 6.2: Fowler-Nordheim plot of a LAFE simulated with local FEFs exponentially dis-
tributed for δ = 0.4, and different work functions φ. The full and dashed lines are guide to the
eyes representing a kinked FN behavior.

initiate for lower values of FM , as expected. Therefore, there is only one approximately linear

region in the FN plot for these values of φ, in this specific range of external applied electric field,

which corresponds to that similarly observed in low applied field for φ = 4.5eV (see Fig.6.2).

Interestingly, as soon as FM increases for φ = 4.5eV , two nearly straight regions can be detected

before the saturation in FN plot. For low FM regime, the intensity of the FM does not generate

a local electric field in LAFE that surpasses 0.4Fφ and then no degradation of the LAFE is

expected. Consequently, the FN plot shows the linear behavior. For intermediate FM -values,

the degradation of the LAFE has already started generating such new nearly linear behavior

with smaller slope as compared to the previous linear regime as shown in Fig.6.2. Finally, the

saturation of the FN plot occurs in the limit of high values of FM .

Next, we discuss that the behavior of the FN plot may reflect the signature of each initial

distribution of FEFs before LAFE’s degradation. In fact, the consequences of degradation of

the initial LAFE’s morphology may be observed as follows by the analysis of Fig.6.3. For

uniform distribution of FEFs, a sudden saturation of the FN plot is observed, as compared

with that observed for LAFEs with both Gaussian and exponential distribution of local FEFs.

This feature is justified because the initial degradation of the LAFE with ρ(γ) uniform covers a

large number of sites that contribute for FE. In contrast, the transition from linear to saturation
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Figure 6.3: Ordinary FN plots for a LAFE simulated with different distributions of FEFs
(dotted points), for c = 0.4 and φ = 4.5eV, and their respective fraction of sites degraded
(lines).

regimes occurs smoothly for ρ(γ) Gaussian and exponential due the gradual degradation of the

sites in the LAFE, as shown in Fig.6.3.

In the literature, the characteristic FEF of a LAFE, γC is communally associated to the “ap-

parently FEF”, βFN = −bφ3/2/SFN , where SFN is the slope extracted from a ordinary FN plot.

However, the possible existence of such linear behavior of the FN plot after the degradation of

the LAFE has already started, show us one must be wary when it extracts information from the

FN plot. This because the degradation of the LAFE initiates at the sites which more contribute

to JM . As consequence, SFN decreases leading to high values of the βFN which is associated

to spurious values of γC . In order to show that, we calculate βFN from the FN plot shown in

Fig.6.4, which was simulated considering site FEFs exponentially distributed (see Fig.6.1) for

δ = 0.4 and φ = 4.5eV, and compare its value with real γC after the end of the degradation pro-

cess (i.e. at the minimum value of 1/FM). The results show that βFN ' 1815 and γC ' 421.87,

implying in a percentage relative difference of 430% between these two quantities. Thus, βFN

in these circumstances reflects spurious values of the real FEF of LAFE.

As completeness of our analyses, the orthodox test proposed by Forbes[126] was also performed.

The results are presented in Fig.6.4. In order to do that, we estimate the effective (point by
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Figure 6.4: Fowler-Nordheim plot of a LAFE generated with FEFs exponentially distributed
(see Fig.6.1), for c = 0.4 and φ = 4.5eV. The (blue) full line is the linear fit, by least square
procedure, to the simulated FN plot data (blue asterisks). The (black) dashed line is the
estimation of the effective scaled barrier field, feff by using Eq.(6.4). Reasonable values for an
orthodox emission predicts that feff , for φ = 4.5eV, are expected to be in the range 0.10 ≤
feff ≤ 0.75 [126].

point in ordinary FN plot) scaled field barrier feff as

feff = − stη

Sfit
(

1
FM

) , (6.4)

where st is the mathematical function that is the slope correction function for the SN barrier[116],

η = bc2φ−1/2, and Sfit ≡ ∂(JM/F 2
M )

∂(1/FM )
. In fact, the exact value of st is always unknown, but a good

approximation for metals is 0.95, as used in this work. For φ = 4.5eV the f -values for orthodox

emission range 0.10 ≤ feff ≤ 0.75[126]. Our results shown in Fig.6.4 clearly indicate that feff

is fully outside of the reasonable range for orthodox emission. This result connects the lack of

field emission orthodoxy with the mechanism of degradation in a LAFE.

Finally, as pointed out by Forbes [158], Ref. [31], which reported current-voltage characteristics

from Au posts on flexible graphene film, has inconsistencies resulting in unexplained origin of the

spurious values found for βFN . As possibilities, Refs. [126] and [158] suggested that mutual-

screening effect or field dependence in the array geometry should merit careful exploration.

Interestingly, for post diameters of 100 and 200 nm, the corresponding extracted scaled barrier

fields found by Forbes [158] were 1.5 and 2.3, respectively. Our results for feff , as shown in

Fig. 6.4, are consistent with the these values and suggest a possible evidence that changing
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in morphology of a LAFE with the increasing of the applied field is the main origin of the

unorthodox emission results reported in Ref. [31].

6.4 Conclusions

In this work, we show that the degradation of a large area field emission may cause two relevant

features over the corresponding FN plot: (i) saturation at high applied field regime and (ii) a

nearly linear regime even after the degradation has been started. We attempt that a nearly

linear FN plot can hide the degradation process resulting in a spurious estimation of the char-

acteristic field enhancement factor of the LAFE, corroborated by the lack of orthodox emission.

We also show that the transition from initial morphology to initialization of degradation be-

havior is reflected in the corresponding FN plot as a consequence of the initial distribution of

FEFs, ρ(γ), which indicates whether the LAFE is formed by either few or large number of

emitting sites that contribute effectively for emission.



Chapter 7

Final Conclusions and Remarks

Throughout this thesis we use random Gaussian surfaces to study two distinct physical systems.

By the physical statistical approach the Schramm-Loewner evolution has yielded to calculate

exactly critical exponents and also gave insights into the probability distribution of the curves.

Much of statistical systems are difficult to describe analytically, thus many conjectures have

been done supported by numerical SLE tests. It is a very promising field which has shown to

extend to new ones. Studying correlated processes might give interesting insights into some

common Statistical Physics problems and lead to new results.

Firstly, in the chapter 2 by using the Fourier Filtering Method to generate a random surface,

we investigated how two concrete examples of random surfaces and, in particular, the critical

exponents are influenced by the presence of phase correlations and by changes in the distribution

of the Fourier coefficient magnitudes and Fourier phases. We verified that long-range phase

correlations in Fourier space lead to a translation of the random surfaces, and that they do not

have any influence on their statistical properties. For different distributions of magnitude of

Fourier coefficients our results suggest that there is no H dependence of the fractal dimension of

the percolation cluster and susceptibility exponent. Although we did not find any influence over

the critical exponents, from our knowledge, this was the first quantitative analyzes regarded to

the distribution of the Fourier coefficient and phases.

It is not straightforward an analytical analysis of random processes. So, the numerical SLE

78
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point of view has gained an increasing interest because, in the scaling limit, several systems

like Loop-Erase random walk, Potts model, percolation, watersheds has shown to share SLE

statistics. The connection between SLE and random surfaces is important, once several physical

systems like Graphene, turbulence and grown surfaces may be represented by random surfaces.

In chapter 3 we showed numerically that curve from correlated random surfaces with −1 ≤

H ≤ 0, in the scaling limit, are consistent with SLE curves. Both numerically by, tests were

performed, a direct SLE numerical test and the Markovian test (no time correlation of the

driving function), has supported our conclusions. In the end, we also show the dependence

between the fractal dimension of the curve and its respective κ.

After we have introduced the cold field electron emission theory for metals in the chapter 4

we proposed a more general criterion for detecting and interpreting nonorthodox field emission

which can be applied to any distribution of local field enhancement factor in conducting large-

area field emitter, in the chapter 5. Due to the consideration of the dependence of the emission

area on applied field, as a byproduct of technological relevance, our results show that general

effective scaled barrier field, f , values extracted from linear Fowler-Nordheim (FN) plots are

outside of the “experimentally reasonable” range of values for physically orthodox emission. It

is a very important result because just confirm what we have seen in several works with LAFEs.

One must have clear that, an linear FN plot is a necessary but it is not a sufficient condition

to characterize an orthodox emission.

In Chapter 6 we investigate the saturation of the FN plots. Much effort has been done to

describe such behavior of the FN plot, which may be caused by different physical phenomena.

In our LAFE, we have considered a possible degradation of random sites of the LAFE when

their reached a threshold local electric field. Such degradation process is not rare to occur, just

that one applies intense electric field on the emitter. We emphasize that a nearly linear regime

on FN plot was identified even after the degradation has been started.

Finally, we conclude that, considering two physical phenomena as, emission area dependency

on applied field and the degradation process, we still have identified a linear region on FN plot.

Such conclusions corroborate what we have affirmed that it is not sufficient to extract a linear



80 Chapter 7. Final Conclusions and Remarks

FN plot from an experiment to guarantee that one follows the orthodox hypothesis. Compared

with experiments on single emitters, experiments with LAFEs are quite new and therefore much

have to be understood in order to describe and characterize correctly the emission process on

LAFEs.

Much still it can be done in both themes. As examples, the numerical SLE test may provide

insights regarded to universality classes of growth surfaces and even that be used in field

emission phenomenon on LAFEs. Also, the complete characterization of LAFEs together with

the correct interpretation of the FN plot is far to be completely understood due to the influence

of several physical phenomena on FN plot. Therefore, as result of the technological importance

of LAFEs this field is current and in progress construction.
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