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“In the history of theoretical physics,
the hypothesis about the possible
existence of a magnetic monopole has
no analogy. There is no other purely
theoretical construction that has
managed not only to survive, without
any experimental evidence, in the
course of more than a century, but has
also remained the focus of intensive
research by generations of physicists.”

– Yakov M. Shnir
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Abstract

In this work, we revisit the thermal production and annihilation of monopoles and their
relic abundance, exploiting the monopole phenomenology described by the effective field
theory of monopole pair production via Drell-Yan process. We make use the vacuum
cross sections for the Drell-Yan reactions to estimate the cross section averaged over the
thermal distribution associated to other particles that constitute the hot medium where the
monopoles propagate, in our case the early universe environment. Then, we use the ther-
mally averaged cross sections as inputs to estimate the evolution of the Relic Abundance
of monopoles following the freeze-out theory.

Keywords: monopoles, effective field theory, particle physics
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Resumo

Neste trabalho, revisitamos a produção e aniquilação térmica de monopolos a fim de cal-
cularmos sua Abundância Residual, explorando a fenomenologia descrita pela teoria de
campo efetiva de produção do par monopolo/antimonopolo através do processo de Drell-
Yan. Usamos as seções de choque do vácuo para estimar a média da seção de choque
sobre a distribuição térmica associada a outras partículas que constituem o meio onde os
monopolos se propagam, em nosso caso, o universo primitivo. Em seguida, utilizamos a
média térmica das seções de choque para calcular e analisar a evolução da Abundância
Residual de monopolos seguindo a teoria do "freeze-out".

Palavras-chave: teoria de campos efetiva, monopolos magnéticos, física de partículas
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Chapter 1

Introduction

It is a well-known fact that magnetic charges (or magnetic monopoles) have never been
found in nature until now. Despite the lack of experimental evidences, since the complete
formulation of the electromagnetism by Maxwell in the 19th century, the physicists have
employed significant efforts not only to find them but also to include the magnetic charge
in the modern framework of the theoretical physics. The idea that motivates generations
of scientists in this attempt is based on a possible "symmetrization" of the Maxwell’s
equations, where monopoles could be include in the Gauss’ law for the magnetic field
playing the same role that electric charges play for electric fields. This concept of an
"electric-magnetic duality" is widely used in the monopoles researches [1–3].

In the last century, the seminal paper by Dirac [4] fanned the flames of the discussion. He
demonstrated that the existence of magnetic charge g implies in the quantisation of the
electric charge qe, according to the rule

qeg =
n

2
, (1.1)

for n integer and adopting the natural units (c = ϵ0 = ℏ = 1) which will be used in
whole work from now on. Although the electric charge quantisation is one of the most
fundamental fact of the quantum mechanics, why it happens remains without other expla-
nation. It is interesting to note that the quantisation rule 1.1 is valid for particle that we can
detect independently in nature. As there is no free quarks, i.e they are always confined
into the hadrons, we can not use the Equation 1.1 to describe the electric charge frac-
tion of these particles.Thus, a consistent quantum field theory for point-like monopoles
emerged and many works in particle physics treat this hypothetical particle as a solution
to some open questions in field theories and cosmology [5–9]. In the pioneering work
of ’t Hooft [6] and Polyakov [7] the existence of magnetic monopoles becomes essential
in the grand unified theories (GUTs), which aims unify the electrodynamics, weak and
strong interactions into one unified force. In that regard, searches for monopoles have be-
ing performed on particle accelerator such as Tevatron at Fermilab and the Large Hadron
Collider (LHC) at CERN. The latter has the dedicated MoEDAL (Monopole and Exotics

1



Chapter 1. Introduction 2

Detector at the LHC) experiment deeply engaged in the searches for monopoles. Others
monopoles searches could be found in Refs. [10–17].

However, for GUTs monopoles is expected a mass of about 1014 − 1016 GeV [3], which
becomes its production impossible in the current particle colliders. Recently, the analysis
of the MoEDAL trapping detector provided mass limits in the range 1500-3750 GeV for
magnetic charges up to 5gD for monopoles of spin 0, 1/2 and 1 [18]. With the current Run
3 of LHC, which will push the energy frontier further, the possibility of direct detection
of a magnetic monopole is once more in the cards.

In addition, one of the consequences of GUTs is the prediction of a high actual abun-
dance of monopoles (one per baryon), which exceeds the observation limit by a factor
of 1012 [19–21]. The absence of observation of magnetic monopoles at the LHC up to
this date, coupled with the non-observation of any relic monopoles argues that the relic
monopole density is small.

As a deeper investigation of Baines et al’s effective theory [22], we will investigate the
behavior of this description in the early universe, since monopoles are stable particle
and therefore monopoles produced in the early stages of the universe could be detected
today. Along those lines, we examine the behavior of spinless and spin-half magnetic
monopole pairs in a high-energy environment via the Drell-Yan process. The precise
process by which monopoles would have been produced in the early universe depends on
their details. In this work we analyze the cosmic relic abundance of magnetic monopoles
from an effective field theory point of view based on the reference [23].

The Chapter 2 is dedicated to the construction of the effective formalism in order to find
the cross sections of production, using [22] as main reference, and then the cross section
of annihilation of monopoles. Both spin cases are analyzed, since the monopole spin
remains a free parameter to be determined. Numerical calculations are performed and the
results as well as the discussion can be found in the end of the chapter.

In Chapter 3 we use the results of the Chapter 2 as inputs to obtain the thermally averaged
cross section for both production and annihilation of monopoles. The approach for the
production follows the standard procedure described in [24] used in relativist heavy ion
collisions, while for the annihilation process we follow the reference [25]. The graphs
and discussion about the results are in the last section of the chapter.

In Chapter 4 we develop the calculations of the relic abundance following the refer-
ence [26] where the author present the "freeze-out" theory in the context of the WIMPS
(Weakly interacting massive particles). We analyze the evolution of the abundance of
monopoles divided into two stages: before and after the moment when the ratio of pro-
duction and annihilation becomes stable. This point, as discussed in the chapter, is named
"stationary point" and some consequences of this idea is analyzed as well. Finally, we
obtain the evolution of the chemical potential. In the end, we present the findings and a
discussion.

In Chapter 5 we summarize the general results obtained in this work and present some
possible improvements in order to upgrade the future discussions. The notation as well as
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the calculations of the invariant amplitudes and cross sections are detailed in Appendix A
and B, respectively, at the end of this work.



Chapter 2

The Effective Formalism

In this chapter, we present the usual techniques of the Effective Field Theory applied to
the monopoles based on the electric-magnetic duality. In section 2.1 and 2.2 we discuss
the effective formalism to obtain the cross section of the monopole pair production and
annihilation, respectively, considering both cases of spin-0 and 1/2. Then, in Section 2.3
we analyze the thermal production and absorption of monopoles. The respective thermally
averaged cross sections are computed for both mentioned spin cases. In the end of the
chapter we plot the total cross section for monopole-antimonopole pair production as a
function of the center-of-mass energy

√
s for different values of the monopole mass M .

2.1 Effective formalism for monopole pair production
and annihilation via Drell-Yan process

The first step in order to investigate the evolution of the abundance of monopole is to
obtain its cross section of production. To this end, we use an effective U(1) gauge field
theory described in Ref. [22], which considers the interaction of magnetically-charged
fields with ordinary photons, based on the mentioned electric-magnetic duality. Unfor-
tunately, the monopole mass and spin are still undetermined parameters, then, in this
work, we will describe the interaction between the monopole of spin 0 and 1/2 with pho-
tons, performing the pertinent replacements in the Lagragians density 1 of sQED (scalar
quantum electrodynamics) and QED (quantum electrodynamics), respectively. With this
considerations, we write [22]

L(S=0) = −1

4
F µνFµν + (Dµϕ)†Dµϕ−M2ϕ†ϕ, (2.1)

1In quantum field theory often the Lagragian density is referred to as the Lagrangian. We will use this
abreviation in the text.

4
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and
L(S=1/2) = −1

4
F µνFµν + ψ(iγµDµ −M)ψ, (2.2)

where ϕ and ψ are the scalar and fermionic monopole fields, respectively; M is the
monopole mass; Fµν ≡ ∂µAν−∂νAµ is the field strength tensor; γµ are the Dirac matrices
and Dµ ≡ ∂µ − igAµ the covariant derivative associated to the U(1) photon gauge field
Aµ, being g the monopole charge.

It is important to remark that many authors have used a monopole-velocity dependent
magnetic charge g(β), obtained under the replacement

g → g
v

c
≡ gβ,

in order to interpret the datas in the colliders searches for monopoles [28–33]. This
conjecture comes from the non-relativistic electron-electron scattering motivated by the
electric-magnetic duality as discussed in details in the reference [22]. Monopoles are hy-
pothetical particles, so we can use both β-dependent and β-independent magnetic charge
in our analyzes. As a first attempt, we consider the β-independent magnetic charge in this
work.

After introducing the Lagrangians it is interesting to understand about the types of produc-
tion and annihilation processes that we will consider. A typically Drell-Yan (DY) process
consists in the quark/anti-quark pair annihilation creating a virtual photon which decays
to a lepton/anti-lepton pair in the s-channel as we can see in Fig. (2.1). This mechanism
has been used to investigate the lepton production in hadrons collisions e.g., relativistic
heavy-ions collision. Since we are basing our work on the "electric-magnetic duality", it
is reasonable to treat the monopole as a lepton in the same way as electron.

The high energy involved in this kind of collisions creates an environment very similar to
the early universe shortly after the Big Bang and not for nothing it’s often called "Little
Bang". In both cases (Little and Big bang), before the hadronization, we have a primor-
dial former of matter constituted by quarks and gluons forming a collective medium which
flows as a relativistic hydrodynamics fluid, named Quark-Gluon Plasma (QGP), with re-
markably low viscosity that can be treat as a perfect fluid. Only in the QGP phase we can
see unconfined quarks and then the Drell-Yan process should play an even more impor-
tant role. For more information about this subject one recommends the references [24,
34–36].

Following the development for the effective formalism, we analyze the Lagrangians (2.1)
and (2.2) in order to compute the spin-averaged cross sections in the center of mass (CM)
frame defined as usual:

σ
(S)
ab→cd(s) =

1

64π2s

|p⃗cd|
|p⃗ab|

∫
dΩ

∑
S

|M(S)
ab→cd(s, θ)|

2, (2.3)

where s is the the square of the centre of mass energy of the incoming particles;
Mab→cd(s, θ) represents the sum of the transition amplitudes of all processes contributing
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Figure 2.1: Lepton pair production via Drell-Yan process

to the interaction with
∑

S being the sum over the spins (or polarizations and colors, as
needed) of the particles involved in the process, weighted by the degeneracy factors g1i
and g2i of the two particles forming the initial state; dΩ is the infinitesimal solid angle
and is defined in Appendix B. The the three-momenta |p⃗ab| and |p⃗cd| are defined in terms
of the Mandelstam variable s as

|p⃗ab| =
1

2
√
s
[s2 + (ma2 −m2

b)
2 − 2s(m2

a +m2
b)]

1/2,

|p⃗cd| =
1

2
√
s
[s2 + (m2

c −m2
d)

2 − 2s(m2
c +m2

d)]
1/2.

(2.4)

2.1.1 Scalar monopole
On this section we will develop the effective formalism for spin-0 monopole production.
Expanding out Eq. (2.1) we get

L(S=0) = −1

4
F µνFµν − ϕ†(∂2 +M2)ϕ− igAµ[(∂

µϕ†)ϕ− ϕ†(∂µϕ)] + g2A2
µ|ϕ|2. (2.5)

In Eq. (2.5) we have the interaction terms in Lagrangian:

L(S=0)
int1 = −igAµ[(∂

µϕ†)ϕ− ϕ†(∂µϕ)], (2.6)

L(S=0)
int2 = g2A2

µ|ϕ|2, (2.7)

The Eq. (2.6) yields the vertex:

qρ

M M

Aρ, ϵλ

= −ig(p1 + p2)µ, (2.8)
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where p1,2 and qρ are the monopole and photon four-momenta, respectively, and ϵλ
the photon polarization.

The Eq. (2.7) provides:

p1µ

q1ρ q2σ

p2ν

M

Aρ, ϵλ

M

Aσ, ϵλ′

= 2ig2ηµν , (2.9)

being ηµν the Minkowski metric tensor with signature (+,−,−,−). This diagram
often is called "seagull vertex" and though it’s a possible interaction allowed for the
sQED theory it will not appear in the DY process. The diagram in Fig. (2.1) reveals only
the three-point vertex. Taking the scalar monopole pair in the final state, we have the
interaction with photons given by Eq. (2.8).

The quark-photon three-point vertex and the respective Feynman rule are:

kπ

q2σ

q1ρ

Aπ

q

q̄

= −iQeγµ, (2.10)

e is the positron charge and Q is the electric charge fraction of quarks, Q = 1/2,
3/2. This interaction vertex could represent the coupling of any spin-1/2 fermion and a
photon, including the fermionic monopole as we will see in the next section.

The last ingredient of our analyzes is the photon propagator that in the Feynman gauge is
writen as

=
−iηµν

k2
. (2.11)

With Eq. (2.8), (2.10) and (2.11) the total matrix amplitude for the considered process is
given by:
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M(S=0)
DY =

kπ Aπ

q̄

q

M

M

= us(q)ci(−iQeγµ)v̄s(q)c†i
(
−iηµν

k2

)
(−ig)(p1ν − p2ν),

(2.12)

where us(q) and v̄s(q) are the quark/anti-quark spinors with dependence on the momen-
tum q, respectively, and ci is a vector associated with the colours of quarks. After some
calculations detailed in Appendix B we can find the squared matrix amplitude averaged
over quark spins and colors in terms of the Mandelstam variable s and the scattering angle
θ as:

|MS=0
DY (s, θ)|2 = 5

3
e2g2β2[1− cos2(θ)], (2.13)

where

β =

√
1− 4M2

s
, (2.14)

is the monopole velocity. Using this results in Eq. (2.3), with Eq. (2.4), and integrating
over the solid angle Ω we obtain the cross section for spin-0 monopole pair production:

σ
(S=0)

qq̄→MM̄
(s) =

5παgαe

27s
β3, (2.15)

where αg and αe are the the magnetic and electric fine structure constant, respectively:

αg =
g2

4π
,

αe =
e2

4π
.

(2.16)

2.1.2 Ferminonic monopole
The pair production of spin-1/2 monopoles by Drell-Yan is analyzed in this section. Ex-
panding out the Lagrangian (2.2) we have:

L(S=1/2) = −1

4
F µνFµν + ψ(iγµ∂ −M)ψ + gψγµψAµ, (2.17)

where we have the interaction term in the same way we find in the standard QED under
the replacement e→ g:

L(S=1/2)
int = gψγµψAµ, (2.18)
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which yields a monopole-monopole-photon three-vertex with the Feynman rule:

qρ

M M

Aρ

= −igγν . (2.19)

The total matrix amplitude for spin-1/2 monopole pair production via DY can be
calculated recovering the rules Eq. (2.10), (2.11) and using Eq. (2.19):

M(S=1/2)
DY =

kπ Aπ

q̄

q

M

M

= us(q)ci(−iQeγµ)v̄s(q)c†i
(
−iηµν

k2

)
ar(p)(−igγν)b̄r(p),

(2.20)

being ar(p) and b̄r(p) the spinors of monopoles with momemtum p. As we can
see in Appendix B:

|MS=1/2
DY (s, θ)|2 = e2g2

3
[2− β2(1− cos2 θ)]. (2.21)

So, the cross section of the fermionic monopole pair production as function of the square
of the centre-of-mass energy s is:

σ
(S=1/2)

qq̄→MM̄
(s) =

10πβαeαg

27s
(3− β2). (2.22)

2.1.3 The effective formalism for monopole pair annihilation via
Drell-Yan process

After finding the cross section for the monopole production, we are able to obtain the
cross section of the inverse process. We will input this quantity in the calculations of
the thermally averaged cross section of absorption of monopoles in Chapter 3, that will
be used to investigate the evolution of the relic abundance in Chapter 4. Then, the cross
sections of the inverse process, in which the monopole pair is annihilated via Drell-Yan
process, can be evaluated using the detailed balance relation [38], i.e.

σcd→ab(s) =
gagb
gcgd

|p⃗ab|2

|p⃗cd|2
σab→cd(s), (2.23)
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where ga = gb = 2 are the factors of degeneracy of spin of the quarks and gc and gd of the
monopoles. For spin-0 monopoles gc = gd = 1 and for spin-1/2 monopoles gc = gd = 2.
The three-momenta were defined in Eq. (2.4) and the cross section on right side was also
calculated in Eq. (2.15) and (2.22). The graph can be seen in Fig.(2.3).

2.2 Numerical Results
The Fig. 2.2 shows the plots of the total cross sections as function of the center-of-mass
energy obtained from Eq. (2.22) and (2.15) evaluated for different values of mass. We
considered this range for the monopole mass motivated by the approach of Baines et
al’s [22].

M = 0.5TeV

M = 1.0TeV

M = 2.0TeV

M = 3.0TeV

M = 4.0TeV

M = 5.0TeV

0 10 20 30 40
10-5

10-4

0.001

0.010

0.100

1

10

s [TeV]

σ
q
q_
→
M
M_
[p
b]

M = 0.5TeV

M = 1.0TeV

M = 2.0TeV

M = 3.0TeV

M = 4.0TeV

M = 5.0TeV

0 10 20 30 40
0.1

0.5
1

5
10

50
100

s [TeV]

σ
q
q_
→
M
M_
[p
b]

Figure 2.2: Total cross section for monopole -antimonopole pair production qq̄ → MM̄
as a function of the center-of-mass energy

√
s, with different values of the monopole

mass M . Plots in the top and bottom panels describe spin-zero and spin-half monopoles,
respectively.

The production cross sections are endothermic. Smaller values of mass provide higher
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cross sections and the thresholds, i.e.
√
smin, increases with M. One can observe from

Fig. 2.2 that for both cases of spin 0 and 1/2, immediately after the thresholds, the mag-
nitude of the cross sections increases quickly reaching a maximum and as the CM energy
increases, the cross section σ decreases for all processes, tending to the same behavior,
almost indistinguishable at very high energies. At

√
s ≈ 15 TeV, for example, this ef-

fective approach suggests cross sections with magnitudes of the order ∼ 10−1 pb and 1
pb for spin-0 and spin-1/2, respectively. For ferminonic monopoles (bottom panel) the
maximum occurs at much greater magnitudes, comparing with the scalar case (top panel),
for the same value of mass.

Looking at the Fig. (2.3) we have plotted the inverse cross section for monopoles of spin
0 and 1/2 as a funtions of

√
s, considering different values of mass.
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Figure 2.3: Total cross section for monopole -antimonopole pair annihilation MM̄ → qq̄
as a function of the center-of-mass energy

√
s, with different values of the monopole

mass M . Plots in the top and bottom panels describe spin-zero and spin-half monopoles,
respectively.

The Fig. (2.3) shows that the threshold increases with the mass, but here we have a differ-
ent behavior near the thresholds. This is the case for spin-half monopoles: the curves for
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σ
(1/2)
inv become very large at their respective thresholds, and quickly decrease with larger√
s. More interestingly, from moderate CM energies onward, these inverse cross sections

become smaller than those for production reactions.

Note that for monopoles of spin 1/2 we have an exothermic process which is expected
once the mass of the monopole in the initial state is bigger than the quarks in the final
state. Although, in the scalar case we have an unexpected endothermic process that could
be understood as a consequence of the approximation βq → 1 in the calculation of the
production cross sections discussed in Appendix B. In addition, at high values of

√
s in

the both spin cases all curves converge to a specific value. Differently from the cross
section of production, at

√
s ≈ 15 TeV this effective approach suggests cross sections of

absorption with magnitudes of the order ∼ 10−3 for both spin-zero and spin-half.

All this results will be used in the next section as input in the calculations of the thermally
averaged cross sections.



Chapter 3

Thermally Averaged Cross Section

In this chapter we derive the thermally averaged cross section both for the production
and annihilation process. We consider the Maxwell-Boltzmann distribution following the
standard procedure of the thermal production of particles in a medium with high temper-
atures. In the end some plots and discussions are done.

3.1 The thermal production and absorption of magnetic
monopoles

When we are treating with process which occur in environments where high energy (tem-
peratures) is reached, the thermal effects cannot be neglected. In this scenario the medium
plays an important role and has a great influence in the energy of reaction. In this work
we are looking at the processes involving production and annihilation of monopoles in
the early universe, before the photon decoupling, where the temperature in its initial
stages could be hundreds, or even thousands, of MeV according the correspondence t(s)
≈ T−2(MeV) [39]. These extreme conditions of temperatures and density also could be
found in the core of compact stellar objects, like neutron stars [40], and in ultra-relativistic
heavy ion collisions [34]. Then, the processes discussed in Chapter 2, which led us to ob-
tain the vacuum cross sections Eq.(2.15) and (2.22), and the formalism developed in this
section can be applied in these scenarios as well.

Motivated by this, the next step is to calculate the quantity that includes the contribution
of the temperature in the particle physics framework i.e. the thermally averaged cross
section, which might be interpreted as the convolution of the vacuum cross section with
thermal momentum distributions of the colliding particles.

13
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3.1.1 Thermally averaged cross section for monopole pair produc-
tion

Despite the previous discussion we introduce the cross section averaged over the ther-
mal distribution for a reaction involving an initial two-particle state going into two final
particles ab→ cd [24]

⟨σab→cd vab⟩ =

∫
d3pad

3pb fa(pa) fb(pb)σab→cd vab∫
d3pad3pb fa(pa) fb(pb)

=
1

4x2aK2(xa)x2bK2(xb)

∫ ∞

z0

dzK1(z)

×σ(s = z2T 2)
[
z2 − (xa + xb)

2
][

z2 − (xa − xb)
2
]
, (3.1)

here vab is the relative velocity of the incoming particles and the function fi(pi) is the
thermal distribution of particles of species i, which depends on the temperature T ; xi =
mi/T and z0 = max(xa+xb, xc+xd) is the threshold i.e. the lowest energy allowed for the
reaction in the centre-of-mass of the two colliding particles; K1 and K2 are the modified
Bessel functions of the second kind.

In the case of thermal monopole production via qq̄ annihilation, denoting the quark masses
by m, we have from Eq. (3.1):

⟨σqq̄→MMvqq̄⟩(S) =
T 4

4m4K2
2(

m
T
)

∫ ∞

2M

dzK1(z)σ
(S)

qq̄→MM̄
(s = z2T 2)

[
z4 − 4m2z2

T 2

]
.

(3.2)

Looking at the equation above it is important to understand the behavior of the multi-
plicative factor before the integral. In order to clarify the analysis let’s call this term of
a function the temperature F (T ). The quark mass m is known and has a magnitude of
m ≈ 10−6 TeV for lightest quark, reaching about m ≈ 10−3 TeV for the havier quarks
[41]. Thus we write

F (T ) =
T 4

4m4K2
2(

m
T
)
. (3.3)

It can be presumed that for small arguments (m/T ) the Bessel function K2(m/T ) in-
crease quickly to very high values in denominator, that is the case for finite tempera-
tures and the relatively small masses of the quarks. Consequently, ⟨σab→cd vab⟩ acquires
very small magnitudes for monopole production processes with respect to the suppression
ones; within the accuracy used in our numerical calculations, they become zero in most of
the range of temperature considered. The behavior of the factor F (T ) in Eq. (3.3) can be
seen in Fig 3.1 both for monopoles and up quark. Note that, the magnitude of the factor
for up quarks is negligible comparing with the monopoles in the studied range of temper-
ature. Because this we only consider in this work the thermally averaged cross section for
the absorption of monopoles that will be presented in the next section.
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Figure 3.1: Top panel the factor F (T ) as function of the temperature T for monopoles,
considering the different masses studied in this work. Bottom panel the factor F (T ) as
function of the temperature T for the up quark mass of 2.16× 10−6 TeV.

3.1.2 Thermally averaged cross section for monopole pair annihila-
tion

In this section we will develop the thermally averaged annihilation cross section to de-
termine the cosmic relic abundance of monopoles in Chapter 4. Our starting point is to
assume that at high temperatures, which is the case in the early universe scenario, fi in
Eq. (3.1) is the equilibrium distribution function of Maxwell-Boltzmann. In that regard
we write

fi(Ei) ∝ e−Ei/T , (3.4)

for particles at a temperature T in the cosmic comoving frame i.e. the coordinate system
where the observer moves due solely to the expansion of the Universe. As discussed by
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Gondolo and Gelmini [25] we can rewrite the standard Eq. (3.1) as:

⟨σab→cd vab⟩ =
∫
d3pad

3pb e
−Ea/T e−Eb/T σab→cd vab∫

d3pad3pb e−Ea/T e−Eb/T
, (3.5)

When we integrate a function which only depends on p in the spherical coordinates we
have for the momentum-space volume element d3p = p2 sin θ dp dθ dϕ:∫ +∞

−∞
d3pf(p) =

∫ 2π

0

dϕ

∫ 1

−1

sin θdθ

∫ ∞

0

p2dp

= (2π)(2)

∫ ∞

0

p2dp f(p),

(3.6)

if f(p) = f(|p|) follows ∫ ∞

0

d3pf(p) =

∫ ∞

0

2π p2dp f(p), (3.7)

then

d3pad
3pb = 2π p2a dpa 2π p

2
a dpa d cosψ,

or in a more convenient form:

d3pad
3pb = 4π p2a dpa 4π p

2
b dpb

1

2
d cosψ, (3.8)

where ψ is the angle between pa and pb; pa = |pa| and pb = |pb|. Now we use the
relativistic relation between energy and momentum E2 = p2 +m2 from which we take
the differential:

d(E2) = d(p2)

2EdE = 2p dp

dp =
EdE

p
,

(3.9)

replacing Eq. (3.9) in Eq. (3.8) we get

d3pad
3pb = 4π p2a

EadEa

pa
4π p2b

EbdEb

pb

1

2
d cosψ

= 4π p2aEadEa 4π p
2
b EbdEb

1

2
d cosψ.

(3.10)

Performing the change variable below

E+ = Ea + Eb

E− = Ea − Eb

s = 2m2 + 2EaEb − 2papb cosψ,

(3.11)
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the Eq. (3.10) becomes

d3pad
3pb = 2π2EaEbdE+dE−ds. (3.12)

In Eq. (3.10) the region of integration was given by the mass shell relation and it is given
by Ea > m,Eb > m, and | cosψ| ≤ 1. The new region of integration must be evaluated.
Then, for E+ we have from Eq. (3.11)

E2
+ = (Ea + Eb)

2

= p2a +m2 + 2EaEb + p2b +m2

= 2m2 + 2EaEb + p2a + p2b ,

(3.13)

where the particles a and b have the same mass and was used the relativistic relation
between energy and momentum. Then, we have for the last two terms of Eq. (3.13)

p2a + p2b = (pa + pb)
2 − 2papb cosψ,

which provides for Eq. (3.13):

E2
+ = 2m2 + 2EaEb − 2papb cosψ + (pa + pb)

2,

using s given in Eq. (3.11) we find;

E+ =
√
s+ (pa + pb)2, (3.14)

and once (pa + pb)
2 ≥ 0 we have for E+:

E+ ≥
√
s (3.15)

Using the same idea for E− and s we can find:

|E−| ≤
√

1− 4m2

s

√
E2

+ − s, (3.16)

s ≥ 4m2. (3.17)

Now we are able to perform the integration in Eq. (3.5) on the new variables. With the
Eq. (3.12), let’s start with the numerator:∫
d3pad

3pb e
−Ea/T e−Eb/T σab→cd vab = 2π2

∫
ds σab→cd vabEaEb e

−E+/T

∫
dE+

∫
dE−

= 2π2

∫
dE+

∫
ds σab→cd vabEaEb

× e−E+/T

√
1− 4m2

s

√
E2

+ − s

= 2π2

∫
ds σab→cd vabEaEb

√
1− 4m2

s

×
∫
dE+e

−E+/T
√
E2

+ − s.

(3.18)
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Using the software Wolfram Mathematica we have for the given integration region of
Eq. (3.15): ∫

dE+e
−E+/T

√
E2

+ − s = T
√
sK1

(√
s

T

)
. (3.19)

With this result the Eq. (3.18) becomes:∫
d3pad

3pb e
−Ea/T e−Eb/T σab→cd vab = 2π2T

∫
dsσab→cd(s− 4m2)

√
sK1

(√
s

T

)
,

(3.20)
for the denominator of Eq. (3.5) we follow a similar procedure and get∫

d3pad
3pb e

−Ea/T e−Eb/T =
[
4πm2 T K2

(m
T

)]2
. (3.21)

Then, replacing Eq. (3.20) and Eq. (3.21) in Eq. (3.5) and defining m/T ≡ x we have
the thermally averaged annihilation cross section which we will use as input into the relic
abundance calculations in the next section given by

⟨σvrel⟩ =
1

8Tm4K2
2(x)

∫ ∞

4m2

ds
(s2 − 4sm2)√

s
K1(

√
s

T
)σ(s). (3.22)

Now we analyze this expression for the monopole case. Remembering that the cross
section which appears in the right-hand side of the Eq. (3.22) is the annihilation cross
section given by Eq. (2.23), we have for monopoles of spin 0 and 1/2:

σ
(S=0)

MM̄→qq̄
(s) =

(
2

1

)(
2

1

) √
s√

s− 4M2
σ
(S=0)

qq̄→MM̄
(s), (3.23)

σ
(S=1/2)

MM̄→qq̄
(s) =

(
2

2

)(
2

2

) √
s√

s− 4M2
σ
(S=1/2)

qq̄→MM̄
(s). (3.24)

The use of the cross section Eq. (3.24) into Eq. (3.22) allows to rewrite:

⟨σMM̄→qq̄ vMM̄⟩(S=1/2) =
5παeαg

36TM4K2
2(x)

∫ ∞

4M2

ds
(s2 − 4sM2)√

s
K1(

√
s

T
)

√
s√

s− 4M2

×1

s

√
1− 4M2

s

[
1− 1

3

(
1− 4M2

s

)]
.

Manipulating the integrand:

⟨σMM̄→qq̄ vMM̄⟩(S=1/2) =
5παeαg

18K2
2(x)TM

3

∫ ∞

4M2

ds

√
s

4M2
− 1

√
1− 4M2

s

[
2

3
+

1

3

4M2

s

]
K1(

√
s

T
).
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According to [42] the next step is to perform the change of variable

y −→ s

4M2
,

ds −→ 4M2dy,

then we have

⟨σMM̄→qq̄ vMM̄⟩(S=1/2) =
5παeαg

18TM3K2
2(x)

∫ ∞

1

(4M2)dy
√
y − 1

√
1− y−1

[
2

3
+

1

3
y−1

]
×K1(2x

√
y)

= ⟨σvrel⟩ =
10παeαgx

9M2K2
2(x)

∫ ∞

1

dy(y − 1)
1
2
(y − 1)

1
2

y
1
2

[
2

3
+

1

3
y−1

]
×K1(2x

√
y),

and finally

⟨σMM̄→qq̄ vMM̄⟩(S=1/2) =
10παeαgx

9M2K2
2(x)

∫ ∞

1

dy(y − 1)[
2

3
y−

1
2 +

1

3
y−

3
2 ]

×K1(2x
√
y).

(3.25)

We can rewrite in the form

⟨σMM̄→qq̄ vMM̄⟩(S=1/2) =
10παgαex

27M2K2
2(x)

[
2I− 1

2
− I− 3

2

]
, (3.26)

where the function Ip is given by

Ip =

∫ ∞

1

dy (y − 1) ypK1 (2x
√
y) .. (3.27)

If we follow the same procedure for spin-0, using the pertinent quantities we find:

⟨σMM̄→qq̄ vMM̄⟩(S=0) =
20παgαex

27M2K2
2(x)

[
I− 1

2
+ I− 3

2

]
. (3.28)

According [42] this approach is valid when the masses of the particles in the final state
are much smaller than those in the initial state. Then, we assume mq = mq̄ = 0 and
mM = mM̄ =M .
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Figure 3.2: Thermally averaged cross sections for monopole pair annihilation MM̄ → qq̄
as a function of x = M/T , with different values of the monopole mass M . Plots in the
top and bottom panels describe spinless and spin-half monopoles, respectively.

3.2 Plots and discussion
The Fig. 3.2 show the thermally averaged cross section for the annihilation of monopoles
of spin 0 and 1/2 as function of the parameter x = M/T considering different values of
mass.

Here again, higher magnitudes are achieved for reactions involving monopoles with
smaller masses, and as the temperature decreases (i.e. the variable x augments) this dif-
ference is kept nearly constant within the considered range of x. Also, these respective
magnitudes are similar for both spin-zero and spin-half monopoles in the region near
x ∼ 2. We point out that, as we increase x, ⟨σMM̄→qq̄ vMM̄⟩ for spin-zero drops faster
than that for spin-half; indeed, the latter suffers just a very slight decrease in the studied
range. In other words, the decreasing of temperature engenders a rate of annihilation for
scalar monopoles smaller than the one for fermionic monopoles.
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Note that the difference between the magnitudes of thermally averaged cross sections
for the annihilation reactions and the production reactions might, in principle, play an
important role in the search for monopoles in the evolution of the monopole abundance
of cosmic origin and in future heavy-ion colliders.

Equipped with this thermally averaged cross section, we will investigate the evolution of
the abundance in the next section.



Chapter 4

Relic Abundance

In this chapter we will use the thermally averaged cross sections calculated in the Chap-
ter 3 in order to obtain the Relic Abundance of monopoles by freeze-out theory. First
we discuss about the concept of freeze-out and then develop the standard Boltzmann rate
equation for the evolution of the particle number aiming to get the differential equation
for the Relic Abundance Y (x). After we examine some properties of Y (x) and determine
a piecewise function for this quantity which yields an especial point named "stationary
point", x̃, where the behavior of Y (x) is ruled by different functions after and before it.
Finally, we discuss about the chemical potential and its evolution for different masses of
monopoles. We obtain the numerical results for all this quantities and in the end of the
chapter we plot and analyze the results.

4.1 The Freeze-out Theory
The last sections provided us the necessary tools to compute the Relic Abundance of
monopoles in the early universe environment. Here we will make use of the so-called
“freeze-out theory” [26] which is built from the standard hot Big-bang model, or as it is
also called, Friedmann–Robertson–Walker (FRW) cosmological model, where is assumed
a homogeneous and isotropic expanding universe. The concept of isotropy means that
there is no special direction i.e there is no difference in the structure of the Universe as
you look in different places. The homogeneity is the assumption that the averaged density
of matter in the universe is about the same on large scales [43]. The most fundamental
feature of this model is the description of the expansion of the universe [44]. This idea
refers to the fact that, after the Big-bang, the universe starts an expansion of space which
increases all distances between any two points and it plays an important role in the freeze-
out theory.

22
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In the first stages of its formation, precisely in the "radiation-dominated era", the uni-
verse was extremely hot and dense, and then a enormous amount of event of creation and
destruction of all kind of particles was occurred at very high rate. Because that any par-
ticle could exist for a long time. As the universe expanded and cooled down, it reaches a
specific temperature, the “freeze-out temperature”, where the production and annihilation
rates of the stable particles become uniform. After this time (or temperature1), named
stationary point, it remains a residual number of particle i.e. the Relic Abundance. This
framework has been employed in several scenarios, like in the analysis of dark matter. We
label this stationary point by x = x̃, it depends on the mass (according to the definition
x =M/T ) and the interactions.

We start from the Boltzmann rate equation that governs the evolution of the relic number
density [45]:

ṅ+ 3Hn = −
〈
σMM̄→qq̄vMM̄

〉
(n2 − n2

0), (4.1)

where ⟨σannv⟩ is the thermally averaged cross section for the annihilation process (i.e.
MM̄ → qq̄ in our case); n0 is the number density in the thermal equilibrium; H is the
Hubble parameter H = Ṙ/R =

√
8πGρ/3 in the FRW cosmology, with G = 1/M2

P

being the cosmological constant (Mp = 1.22 × 1016 TeV is the Planck mass), where R
is the cosmic scale factor, and ρ = π2gρT

4/30 the total energy density of the universe
(gρ counts the relativistic degrees of freedom contributing to the energy density). The
expansion of the universe is an adiabatic process, so the entropy per comoving volume
S = R3s is conserved. Here s = (2π2/45)gsT

3 is the entropy density with gs being
the relativistic degrees of freedom associated to the the total entropy density. Dividing
Eq. (4.1) by S and using the constant H in terms of R, it follows

ṅ

R3s
+ 3

Ṙ

R

n

R3s
= − 1

R3s

〈
σMM̄→qq̄vMM̄

〉
(n2 − n2

0). (4.2)

Note that the time derivative of S is:

Ṡ = 3R2Ṙs+R3ṡ, (4.3)

once Ṡ = 0, Eq. (4.3) provides

ṡ

s
= −3

Ṙ

R
= −3H

replacing it in Eq. (4.2) and developing the right side to a convenient form, we get:

dn

dt

1

s
− ṡ

s2
n = −s

〈
σMM̄→qq̄vMM̄

〉 [(n
s

)2

−
(n0

s

)2
]
. (4.4)

The left hand side can be rewrite using:

d

dt

(n
s

)
=
dn

dt

1

s
− ṡ

s2
n. (4.5)

1Since our interest is to analyze the thermal production of monopoles, the temperature is most useful to
being used as the evolution parameter of the system instead the time.
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It is useful to use the ratio of the number of particles to the entropy Y = n/s. So replacing
Eq. (4.5) in Eq. (4.4):

dY

dt
= −s

〈
σMM̄→qq̄vMM̄

〉
(Y 2 − Y 2

0 ) (4.6)

Thereafter, the variable is changed by employing the correspondence d/dt → Hxd/dx,
enabling one to rewrite the rate equation for the relic abundance as function of x in the
form,

dY

dx
=
C

x2
〈
σMM̄→qq̄vMM̄

〉
(Y 2

0 − Y 2), (4.7)

where
Y0 = 45/(4π4)(g/gs)x

2K2(x), (4.8)

is the initial equilibrium abundance (g = 1 or 2, for scalar or fermionic monopoles,
respectively), and C =

√
π
45
MPM

√
g∗, with

√
g∗ =

gs√
gρ

(
1 +

T

3

d(ln gs)

dT

)
, (4.9)

depending on the relativistic degrees of freedom gρ and gs.

An important remark to do here is that the Eq. (4.7) describe the evolution of the abun-
dance after the stationary point x̃. To analyze epochs before x̃ we have the function:

Y1(x) =

√
Y 2
0 − x2

C
〈
σMM̄→qq̄vMM̄

〉 dY0
dx

, (4.10)

The evolution can be studied into two stages: at early times where we have Eq. (4.10)
governing the abundance until the point x̃, and at later times with Eq.(4.7) that we will
denote by Y2(x). Then, the true relic abundance Y (x) can be defined by the piecewise
function

Y (x) =

{
Y1(x), x ≤ x̃,

Y2(x), x ≥ x̃,
(4.11)

The next step is to discuss how to determine the stationary point x̃. For this purpose we
define the difference ∆ = Y − Y0, the amount of abundance distant from equilibrium.
Then, the matching point between the solutions in the two regions of x can be estimated
by means of ∆(x̃) = cY0(x̃), where c is a numerical factor determined by the numerical
solution of the rate equation. Different values for c have been proposed in the literature
in distinct physical scenarios Ref. [26]. As a first attempt, here we adopt the condition
∆(x̃) = Y0(x̃), yielding Y2(x̃) = Y1(x̃) = 2Y0(x̃). Rewriting Y1(x) in Eq. (4.10) in the
form Y1(x) ≡ (1 + δ(x))Y0(x), where

δ(x) =

√
1− x2

C
〈
σMM̄→qq̄vMM̄

〉
Y 2
0

dY0
dx

− 1, (4.12)
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we obtain, for the assumed condition above, δ(x̃) = 1, which is equivalent to

− 1

Y0

dY0
dx

∣∣∣∣
x=x̃

=

[
3
C

x2
〈
σMM̄→qq̄vMM̄

〉
Y0

]
x=x̃

. (4.13)

Finding the root of the Eq. (4.13) we obtain different values for x̃ depending on the
monopole mass as we can see in Table 4.1. Acording this result, the freeze-out tempera-
ture T̃ increases with the mass, which means that heavier monopoles should be produced
in earlier stages of the universe. It is important to remark that, after to perform numerical
calculation to find the roots of Eq. (4.13), x̃ does not present a sensible difference for both
spins cases, although this dependence appears into Eq.(4.13) due the cross section and the
degenerescence factor g. This result suggests that spin-zero and spin-half would have left
a relic abundance at the same moment of evolution of the universe, once the same temper-
ature T̃ is obtained for both spin cases. We also include the stationary point evaluated for
a mass whih magnute of 104 TeV, which have been related as a upper limit imposed by
the nucleosynthesis constraints on the abundance of relic monopoles [3, 46]. The Fig.4.1
shows the continuous variation of x̃ in the studied range.

Table 4.1: Magnitudes of temperature T̃ and x̃ = m/T̃ obtained from the condition in
Eq. (4.13) for different values of the spin-zero monopole mass.

Mass (TeV) T̃ (TeV) x̃

0.5 0.02 29.42
1.0 0.03 28.75
2.0 0.07 28.08
3.0 0.11 27.69
4.0 0.15 27.41
5.0 0.18 27.20
104 486.38 20.56

Table 4.2: Magnitudes of temperature T̃ and x̃ = m/T̃ obtained from the condition in
Eq. (4.13) for different values of the spin-half monopole mass.

Mass (TeV) T̃ (TeV) x̃

0.5 0.02 29.82
1.0 0.03 29.15
2.0 0.07 28.49
3.0 0.11 28.09
4.0 0.14 27.82
5.0 0.18 27.60
104 492.61 20.30

We are adopting the idea that in the first stages the thermal (and chemical) equilibrium
holds. As the universe is expanding and cooling, the particles, in our case the monopoles,
start an evolution to a nonzero chemical potential. It is related to the “affinity”, defined
as A = −

∑
i νiµi, where µi are the chemical potentials of the species of type i, and νi
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Figure 4.1: Continuous variation of the stationary point x̃with the monopole mass accord-
ing Eq. (4.13) obtained from the freeze-out theory. Plots in the top and bottom panels:
cases of spin-zero and spin-half monopoles, respectively

are the stoichiometric coefficients, which are assumed to be negative for monopoles and
antimonopoles, yielding A = 2µ [26]. If we assume that it is related to the log of the ratio
between the production and annihilation rates, i.e. the two terms in the right-hand side of
the rate equation in (4.1), then one can write the chemical potential as

µ =
M

x
ln

(
Y

Y0

)
. (4.14)
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4.2 Numerical results and discussion
Now we are able to discuss about the results obtained above. In the Fig. 4.2 we have the
plot of the Relic Abundance as function of the paremeter x = M/T given in Eq. (4.11).
First of all, looking at the Fig. 4.2 we can see that before the stationary point, the abun-
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Figure 4.2: The relic abundance Y (x) for monopole as a function of x =M/T , according
to Eq. (4.11), taking different values of the monopole massM . Plots in the top and bottom
panels: cases of spin-zero and spin-half monopoles, respectively.

dance evolves in a very similar way for all values of the monopole mass in both spin
cases. After x̃ there is reasonable difference in the abundance for each value of mass.
The abundace of monopoles increases directly with the monopole mass. Comparing the
abundance of monopoles with M = 0.5 TeV and M = 5.0 TeV we have a difference of
one order of magnitude in their relic abundance. It can be seen as a theoretical evidence
that heavy monopoles are more stable than light monopoles. The results suggest that the
abundance does not behave differently for spin-zero and spin-half relic monopoles.

From the quantitative point of view, the values estimated for the relic abundance are
clearly high, in view of the effective formalism and the magnitudes of the couplings and
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quantities taken. In that regard, the density of relic monopoles is naturally modified for
different set of values for the relevant parameters, e.g. gD,

√
g∗,

√
gs and so on. Clearly,

more accurate analyses are needed to improve the present investigation such as, for ex-
ample, the impact of our distinct assumptions on the values of the relevant parameters,
the inclusion of other variables of interest (e.g. magnetic background), and so on. We
postpone them for future discussions.

In addition, we can see the chemical potential as function of x for both spin cases in
Fig.4.3, according to Eqs. (4.14) and (4.11), for different values of M . Since a non-zero
chemical potential means a process out of chemical equilibrium, we see that at earlier
stages of the universe, µ increases by several orders of magnitude, but as x increases
and the rate in the definition of µ decreases, this yields a moderate growth. At larger x,
i.e. smaller temperatures, this rate is very small, and µ saturates to an asymptotic value
and the abundance tends to be constant. Interestingly, the asymptotic value is just the
monopole mass, similarly to the findings in Ref. [26].
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Figure 4.3: The chemical potential for monopoles of spin 0 (Top panel) and spin 1/2
(Bottom panel) as a function of x = M/T , according to Eqs. (4.14) and (4.11), taking
different values of the monopole mass M . Plots in the top and bottom panels: cases of
spin 0 and 1/2, respectively.
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Conclusions

In this work we have analyzed the relic abundance of monopoles, in the early universe
scenario, using the mechanism of the freeze-out theory proposed by [26]. In this regard,
we have used the effective field theory, presented by Baines et al, in order to find the vac-
uum cross sections for the Drell-Yan reactions, which we have used as input to estimate
the thermally averaged cross sections. Once the spin and mass of monopoles remain a
free parameters, we have considered the case of the scalar and fermionic monopole for all
quantities calculated. In the chosen range of mass, our results showed that the thermally
averaged cross sections for the pair production are highly suppressed while, at higher
temperatures, the cross sections for the annihilation of lighter pairs reach larger values.
In addition, the rate of annihilation for scalar monopoles is smaller than for fermionic
monopoles, which can be understood as a theoretical evidence of a more stability for
heavy monopoles of spin-0. This might be relevant in the search for monopoles in future
heavy-ion colliders and of cosmic origin.

Then, we describe the evolution of the relic abundance of monopoles using the ther-
mally averaged cross sections as input. Our results endorse the previous assertion, once
larger mass of monopoles produce higher values of the relic abundance. Besides, heav-
ier monopoles showed to reach the equilibrium at higher temperatures than the lightest,
implying in the fact that, as the mass of monopole increases, it left a relic abundance in
earlier stage of the universe. No difference for scalar and femionic monopole was found
in their abundance.

To conclude, we emphasize that our general objective was to study the implications of
the effective field theory of Ref. [22] on some aspects of the monopole phenomenology.
Clearly, more accurate analyses are needed to improve the present investigation such as,
for example, the impact of our distinct assumptions on the values of the relevant param-
eters, the inclusion of other variables of interest (e.g. magnetic background), and so on.
We postpone them for future discussions.
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Appendix A

Definitions

We adopt the SI natural units:
c = ϵ0 = ℏ = 1

We assume the Einstein notation:

xiyi =
∑
i

xiyi

and indices written with the Greek alphabet take on values (0, 1, 2, 3) while the Latin
alphabet take on values (1, 2, 3).

The Minkowski metric ηµν is:

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.1)

which is symmetric:

gµν = gνµ,

and defines the operations of raising and lowering indices:

V µ = gµνVν

Vµ = gµνV
ν .

(A.2)

The four-momentum is denoted by pµ = (E,p) and the inner product is:

p1.p2 = E1E2 − p1.p2 = E1E2 − p1p2 cos θ, (A.3)

begin θ the angle between p1 and p2.
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In the center of mass frame we have for the quarks (q) and monopoles (p):

Eq1 = Eq2

Ep1 = Ep2

Eqi = Epi = E.

(A.4)

Consequently
q1.p1 = E2 − qp cos θ = q2.p2

q1.p2 = E2 + qp cos θ = q2.p1

q1.q2 = E2 + q2 = E2 +m2
q

p1.p2 = E2 + p2 = E2 +m2
p,

(A.5)

for q2 = m2
q and p2 = m2

p. The Mandelstam variables are defined:

t = (q1 − p1)
2 = m2

q +m2
p − 2q1p1 = (−q2 + p2)

2 = m2
q +m2

p − 2q2p2

u = (q1 − p2)
2 = m2

q +m2
p − 2q1p2 = (−q2 + p1)

2 = m2
q +m2

p − 2q2p1

s = (p1 + p2)
2 = (q1 + q2)

2

s+ t+ u =
4∑

i=1

m2
i ,

(A.6)

where mi are the masses of the particles in the initial and final states.

The spinor sum rules is: ∑
s

us(p)ūs(p) = (/p+m)∑
r

v̄r(p)vr(p) = (/p−m),
(A.7)

where /p = γµpµ. The properties of Dirac’s matrix is:

Tr[γµγν ] = 4ηµν

Tr[γµγνγσγρ] = 4ηµνησρ − 4ηµσηνρ + 4ηµρηνσ,
(A.8)

and

Tr[(usγ
µūs)(v̄rγ

µ′
vr)] = Tr[(/p+m)γµ(/p−m)γµ

′
]

= p1ρp2σ(4η
µσηµ

′ρ − 4ηµµ
′
ησρ

+ 4ηµρηµ
′σ)− 4m2ηµµ

′
.

(A.9)

The angular differential cross section is:

dσ

dΩ
=

1

64π2s

|p⃗1|
|q⃗1|

|M|
2
. (A.10)

Now some Feynman rules and definitions useful to the calculations in next appendix.
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• Incoming quark

p→ = us(p)ci, (A.11)

• Outgoing quark

p→ = ūs(p)c
†
i , (A.12)

• Incoming antiquark
p→

= v̄s(p)c
†
i , (A.13)

• Outgoing antiquark
p→

= vs(p)ci. (A.14)

where ci refers to the three color charges of quarks and i = 1, 2, 3, with the hermitian
column matrix representation:

c1 =

1
0
0

 (A.15)

c2 =

0
1
0

 (A.16)

c3 =

0
0
1

, (A.17)



Appendix B

Calculation of the invariant amplitudes
and cross sections

Here we will compute the squared matrix amplitude averaged over spins and colors for
both scalar and fermionic monopole pair production showed in Eq.(2.13) and (2.21) to
obtain its respective cross sections.

B.1 Scalar monopole pair production
Starting with scalars monopoles we have from Eq.(2.12):

M(S=0)
DY = us(q1)ci(−iQeγµ)v̄s(q2)c†i

(
−iηµν

k2

)
(−ig)(p1ν − p2ν)

M∗(S=0)
DY = (p1ν′ − p2ν′)(ig)

(
iηµ

′ν′

k2

)
vs′(q2)ci′(iQeγµ′)ūs′(q1)c

†
i′ ,

(B.1)

where M(S=0)
DY and M∗(S=0)

DY are the total matrix amplitude and its hermitian conjugate,
respectively. Remembering that us(q1) and v̄s(q2) are the quark/anti-quark spinors depen-
dent on the momentum q1 and q2, respectively; ci and c†i the column matrix representing
the three color charge of quarks given by Eq. (A.15), (A.16) and (A.17); Q is the frac-
tion electric charges of quarks and e the positron charge; γµ the Dirac’s matrix; ηµν the
Minkowski metric; p1 and p2 are the momentum of outgoing scalar monopoles; k is the
photon momentum. The momentum dependence of spinors will be omitted for a clear
notation from now on. Then, squaring Eq.(B.1) and summing over spins and colors, we
have

|MS=0
DY |2 =

∑
i,i′

∑
s,s′

M(S=0)
DY M∗(S=0)

DY

=
e2g2

k4

(
2!

4

)(
1

3

)∑
Q

Q2
∑
i,i′

∑
s,s′

[usciγµv̄sc
†
iη

µν(p1ν − p2ν)][(p1ν′ − p2ν′)

× ηµ
′ν′vs′ci′γµ′ūs′c

†
i′ ],
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the 2!, 1
4
, 1
3

factors account for the symmetry factor of the final states, and the averaging
over spins and color states. The sum over the quark charges is∑

Q

Q2 =

(
1

3

)2

+

(
2

3

)2

=
5

9

Then

|MS=0
DY |2 = 5

9

e2g2

k4

(
1

6

)∑
i,i′

[cic
†
ici′c

†
i′ ]
∑
s,s′

[(usγµv̄s)η
µν(p1ν − p2ν)][(p1ν′ − p2ν′)

× ηµ
′ν′(vs′γµ′ūs′)]

=
5

9

e2g2

k4

(
1

6

)
3
∑
s,s′

[(usγµv̄s)(vs′γµ′ūs′)]η
µν(p1ν − p2ν)(p1ν′ − p2ν′)η

µ′ν′

=
5

9

e2g2

k4

(
1

2

)
Tr[(usγµv̄s)(vs′γµ′ūs′)]η

µν(p1ν − p2ν)(p1ν′ − p2ν′)η
µ′ν′ ,

(B.2)

where we used from (A.15), (A.16) and (A.17):∑
i,i′

[cic
†
ici′c

†
i′ ] = 3.

With the relation (A.9) the Eq. (B.2) becomes:

|MS=0
DY |2 = 5

9

(
3e2g2

2k4

)
[qρ1q

σ
2 (4ηµσηµ′ρ − 4ηµµ′ησρ + 4ηµρηµ′σ)− 4m2ηµµ′ ]

× (pµ1 − pµ2)(p
µ′

1 − pµ
′

2 )

=
5

9

(
3e2g2

2k4

)
[4q1µ′q2µ − 4qρ1q2ρηµµ′ + 4q1µq2µ′ + 4m2ηµµ′ ]

× (pµ1p
µ′

1 − pµ1p
µ′

2 − pµ2p
µ′

1 + pµ2p
µ′

2 ),

(B.3)

where the factor 3 in the numerator introduces the contribution of three flavors of quarks.
The properties (A.2) provide us:

|MS=0
DY |2 = 5

9

(
3e2g2

2k4

)
[(4q1µ′q2µp

µ
1p

µ′

1 − 4q1µ′q2µp
µ
1p

µ′

2 − 4q1µ′q2µp
µ
2p

µ′

1 + 4q1µ′q2µp
µ
2p

µ′

2 )

+ 4m2(p1µ′pµ
′

1 − p1µ′pµ
′

2 − p2µ′pµ
′

1 + p2µ′pµ
′

2 )

+ (4q1µq2µ′pµ1p
µ′

1 − 4q1µq2µ′pµ1p
µ′

2 − 4q1µq2µ′pµ2p
µ′

1 + 4q1µq2µ′pµ2p
µ′

2 )

+ 4m2(p1µ′pµ
′

1 − p1µ′pµ
′

2 − p2µ′pµ
′

1 + p2µ′pµ
′

2 )].

Working at the center of mass frame follow the development using the relations (A.4) and
(A.5):
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|MS=0
DY |2 = 5

3

(
e2g2

2k4

)
4{(E2 − pq cos θ)(E2 + pq cos θ)− (E2 + pq cos θ)(E2 + pq cos θ)

− (E2 − pq cos θ)(E2 − pq cos θ) + (E2 + pq cos θ)(E2 − pq cos θ)

+ 2m2[p2 − E2 − p2 + E2 + p2 + p2] + (E2 − pq cos θ)(E2 + pq cos θ)

− (E2 − pq cos θ)(E2 − pq cos θ)− (E2 + pq cos θ)(E2 + pq cos θ)

+ (E2 + pq cos θ)(E2 − pq cos θ)},

which can be rewriten as

|MS=0
DY |2 = 5

3

(
e2g2

2k4

)
4[4(E2 − pq cos θ)(E2 + pq cos θ)− 2(E2 + pq cos θ)(E2 + pq cos θ)

− 2(E2 − pq cos θ)(E2 − pq cos θ) + 2m2p2 + 2m2p2],

and after some calculations we have

|MS=0
DY |2 = 5

3

(
e2g2

2k4

)
32[p2q2 − p2q2 cos θ].

Writing the boosts
βq =

q

E

βp =
p

E

and using the momentum conservation at vertex we can write the photon momentum in
terms of the total energy E:

k2 = (q1 + q2)
2 = (p1 + p2)

2 = (2E)2 = 4E2

then

|MS=0
DY |2 = 5

3

(
e2g2

32E4

)
32E4[β2

qβ
2
p − β2

qβ
2
p cos

2 θ]

=
5

3
(e2g2)[β2

qβ
2
p − β2

qβ
2
p cos

2 θ].

It’s important to note that the magnitude of the masses of quarks is comprehended in
the range 10−6 TeV ≤ m ≤ 10−3 TeV (where the lower and upper limit are the mass
of lightest and havier quarks, respectively, according [41]) which is negligible compared
with the monopole masses that in this work is 0.5 TeV ≤ M ≤ 5 TeV. Considering
M >> m, the contribution of the boost βq becomes insignificant compared with βp.
Hence βq → 1 and we define βp ≡ β. We get

|MS=0
DY |2 = 5

3
(e2g2)β2[1− cos2 θ]. (B.4)
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Using this result as input in the Eq. (A.10) we can compute the differential cross section:

dσ(S=0)

dΩ
=

1

64π2s

|p⃗1|
|q⃗1|

{
5

3
(e2g2)β2[1− cos2 θ]

}
=
αgαe

4s

βp
βq

5

3
β2[1− cos2 θ],

where Eq. (2.16) were used. Finally, we have

dσ(S=0)

dΩ
=

5αgαe

12s
β3[1− cos2 θ]

=
5αgαe

12s
β3 sin2 θ.

(B.5)

The usual definition for the infinitesimal solid angle is dΩ = sin θdθdϕ. So, the total cross
section is given by

σ
(S=0)

qq̄→MM̄
(s) =

5αgαe

12s
β3

∫ 2π

0

dϕ

∫ π

0

(sin2 θ) sin θdθ, (B.6)

which provides the Eq. (2.15). It is important to mention here that the monopole mass is
much bigger than quarks masses, and then we do not distinguish the mass of the different
flavor of quarks.

B.2 Fermionic monopole pair production
Now we have to follow the same steps in order to compute the squared matrix amplitude
an the cross section for spin-1/2 monopole production. From Eq. (2.20) we have:

M(S=1/2)
DY = usci(−iQeγµ)v̄sc†i

(
−iηµν

k2

)
ar(−igγν)b̄r

M∗(S=1/2)
DY = br′(igγν′)ār′

(
iηµ

′ν′

k2

)
vs′ci′(iQeγµ′)ūs′c

†
i′ ,

(B.7)

which follows
|MS=1/2

DY |2 =
∑
i,i′

∑
s,s′

∑
r,r′

M(S=1/2)
DY M∗(S=1/2)

DY ,

|MS=1/2
DY |2 = e2g2

k4

(
1

4

)(
1

3

)∑
Q

Q2
∑
i,i′

∑
s,s′

∑
r,r′

[usciγµv̄sc
†
iη

µνarγν b̄r]

× [br′γν′ ār′iη
µ′ν′vs′ci′γµ′ūs′c

†
i′ ]

=
5

9

e2g2

k4
1

12

∑
i,i′

[cic
†
ici′c

†
i′ ]
∑
s,s′

∑
r,r′

[usγµv̄sη
µνarγν b̄r]

× [br′γν′ ār′η
µ′ν′vs′γµ′ūs′ ]

=
5e2g2

36k4

∑
s,s′

∑
r,r′

[usγµv̄sη
µνarγν b̄r][br′γν′ ār′η

µ′ν′vs′γµ′ūs′ ],
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|MS=1/2
DY |2 = 5e2g2

36k4
Tr[(usγ

ν v̄s)(vs′γ
ν′ūs′)] Tr[(arγν b̄r)(br′γν′ ār′)].

So, using the relation A.9 and working at the center of mass frame, following the same
steps that we performed for spin 0, we arrive at

|MS=1/2
DY (s, θ)|2 = e2g2

3
[2− β2(1− cos2 θ)]. (B.8)

From where we can compute the differential cross section:

dσ(S=1/2)

dΩ
=

1

64π2s

|p⃗1|
|q⃗1|

{
e2g2

3
[2− β2(1− cos2 θ)]

}
=
αgαe

12s

βp
βq

[2− β2 sin2 θ]

=
αgαeβ

12s
[2− β2 sin2 θ].

Integrating over the solid angle we have

σ
(S=1/2)

qq̄→MM̄
(s) =

αgαeβ

12s

∫ 2π

0

dϕ

∫ π

0

[2− β2 sin2 θ] sin θdθ, (B.9)

and solving this integral we get the Eq. (2.22).
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