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Abstract

To understand ecological communities, we must understand the complex dynamical patterns that
emerge from population interactions. Indeed, ecological communities are non-randomly assembled,
and the interactions between populations have distinct architectures or topologies. Through this
structure of interactions, populations and species influence each other’s growth in an intricate
manner. These dynamics unveil themselves in community-wide emergent properties, such as com-
munity stability. During the last century, many central advancements in ecology stemmed from
mathematical methods based on dynamical systems theory. More recently, the representation of
ecological communities as complex networks, such as food webs and competitive or mutualistic net-
works, provided additional insights into the ecology of communities. Several authors contributed to
our current knowledge on the interplay between the structure and dynamics of complex ecosystems.
Despite the extensive developments in this area, many questions are not yet settled. Notably, the
distribution of each type of dynamics (attractors) in ecological models was seldomly studied in
favor of the assumption of equilibrium. Additionally, an approach exploring the ubiquity of known
results linking community stability to structure-related parameters in the parameter space is of
great importance. In this study, we aim at contributing to this endeavor by performing simula-
tions based on the generalized Lotka-Volterra model (gLV) across a wide parameter space range.
In accordance, our research objective is to present an overview of the gLV asymptotic dynamics,
coexistence, and resilience by performing a comprehensive computational exploration integrating
variability in type, intensity, and distribution of interspecific ecological interactions. We found that
different dynamics of ecological communities can be described by specific parametrizations of the
gLV, despite a large prevalence of parameter combinations leading to unlimited growth of some
populations in the community. We were also able to detect known patterns, such as the negative
impact of cooperation upon the resilience of communities and the occurrence of competitive exclu-
sion in speciose communities. Significantly, our research contributes to the longstanding question
of the interconnections between the structure and stability of ecological communities.



Resumo

Para entender as comunidades ecológicas, é essencial que entendamos os padrões dinâmicos com-
plexos que emergem das interações entre as populações. De fato, as interações entre as populações
em uma comunidade ecológica possuem arquiteturas ou topologias singulares. Por meio dessa es-
trutura de interações, as populações e as espécies influenciam o crescimento umas das outras de
maneira intrincada. Essa dinâmica se revela em propriedades emergentes ao nível de comunidade,
como a estabilidade. Durante o último século, muitos avanços centrais na ecologia resultaram
de métodos matemáticos baseados na teoria dos sistemas dinâmicos. Mais recentemente, a rep-
resentação de comunidades ecológicas como redes complexas, a exemplo das teias alimentares e
redes competitivas ou mutualísticas, permitiu novas descobertas acerca da ecologia das comu-
nidades. Vários autores contribuíram para o nosso conhecimento atual sobre a interação entre a
estrutura e a dinâmica de ecossistemas complexos. Apesar dos extensos desenvolvimentos nesta
área, muitas questões ainda não foram resolvidas. Notavelmente, a distribuição de cada tipo de
dinâmica (atratores) em modelos ecológicos raramente foi estudada em favor da suposição de que
comunidades ecológicas estariam em equilíbrio. Além disso, uma abordagem explorando a ubiq-
uidade dos resultados conhecidos relacionando estabilidade e estrutura de comunidades no espaço
de parâmetros é fundamental. Neste estudo, almejamos contribuir para este esforço realizando
simulações baseadas no modelo generalizado de Lotka-Volterra (gLV) em uma ampla faixa de
espaço de parâmetros. Para tanto, nosso objetivo de pesquisa é apresentar uma visão geral da
dinâmica assintótica, coexistência e resiliência de comunidades ecológicas representadas através do
modelo gLV, realizando uma exploração computacional abrangente que integra variabilidade no
tipo, intensidade e distribuição de interações ecológicas. Descobrimos que diferentes dinâmicas
de comunidades ecológicas podem ser descritas por parametrizações específicas do modelo gLV,
apesar de uma grande prevalência de combinações de parâmetros levando ao crescimento ilimitado
de algumas populações na comunidade. Também fomos capazes de detectar padrões conhecidos,
como o impacto negativo da cooperação sobre a resiliência das comunidades e a ocorrência de ex-
clusão competitiva em comunidades específicas. Assim, nossa pesquisa contribui significativamente
para o avanço científico no entendimento das interconexões entre a estrutura e a estabilidade das
comunidades ecológicas.
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Chapter 1

Introduction

Traditional indigenous wisdom teaches that "The idea of us humans being detached from the Earth
[...] is absurd"1(Krenak 2019). Indeed, humanity faces inevitable upcoming challenges to its very
existence stemming from its profound impacts on Earth’s ecosystems, such as climate change and
the Anthropocene mass extinction (Dyurgerov and Meier 2000; Dirzo et al. 2014). These global
changes are bound to have profound effects on natural systems and modern civilization alike.
In this context, it is necessary to understand how the interactions among various species across
different ecosystems shape ecological communities and how they are related to ecosystem stability.
Despite the many possible definitions of ecological stability, knowing if a community existence,
composition, and status are likely to change is essential. Even more important is to understand
why that is the case.

Remarkably, early ecologists suggested that rich and complex ecosystems were associated with
increased stability (Dunne 2006). However, this idea was challenged in 1972 when May put for-
ward evidence that richer and more complex systems should be less stable (May 1972b). Despite
the extensive research dedicated to elucidating the interplay between structure and dynamics in
ecological networks, several inconsistencies are still present in the field.

In particular, it is mostly unknown how different aspects of structure influence the temporal
evolution of the species’ densities (Serván et al. 2018). Highlighting the importance of taking
dynamics into account, Fowler (2009) found the relationship between structure and stability to
be different when species’ densities oscillated. Furthermore, due to the interconnections of the
many aspects of structure (topology, type, and intensity of interactions), it is necessary to address
multiple ecological interaction types while also allowing variability in how they are distributed and
how intense they are.

Mathematical models are powerful tools in answering such questions. Accordingly, the use of
mathematical models to study interactions between populations has at least one hundred years of
history. In the foundational works of Lotka (Lotka 1920) and Volterra (Volterra 1926), fluctua-
tions in populations’ densities were mathematically considered through a set of coupled differential
equations in time that takes into account both the intrinsic growth rate of the populations and the
interactions between them. Even though these early investigations did not preclude the study of
systems composed of many populations, most studies focused on the dynamics of few interacting
populations. When many populations are considered, these interactions’ patterns can be repre-
sented as a complex network, which embeds the structure of the interspecific interactions in an
ecological community.

The framework most commonly used to represent systems of multiple interacting populations
is the generalized Lotka-Volterra (gLV) model. Such a relatively simple model can encompass
all possible pairwise interactions between an arbitrary number of populations. In this model,
each interaction is represented by a law of masses – the magnitude of the interaction is directly
proportional to the product of the densities of the two interacting populations. Despite its seeming
simplicity, this model can display any dynamics (Smale 1976). Additionally, it is convenient that
there is a direct connection between the interaction matrix of the gLV and the adjacency matrix
of the network representation of the system.

1Original phrase: "A ideia de nós, os humanos, nos descolarmos da terra, vivendo numa abstração civilizatória,
é absurda. Ela suprime a diversidade, nega a pluralidade das formas de vida, de existência e de hábitos". Our
translation.
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Remarkably, one aspect that hindered the development of research on alternative asymptotic
dynamics is the difficulty of addressing high-dimensional systems analytically. The dimensionality
of the problem hinders the usefulness of traditional analytical tools developed for systems with few
interacting populations. Moreover, the overall relation between structure and dynamics can be
concealed by how structure and stability are defined or measured. Positively, many aspects of this
relation are currently known, and some integrative approaches are starting to present a broader
perspective. However, there is a need to join this complex and diverse knowledge corpus into an
overall coherent framework. Undoubtedly, it is a substantial challenge to unravel the complex
interplay between structure and dynamics in ecological communities.

In this study, we aim at contributing to this endeavor by performing simulations based on the
generalized Lotka-Volterra model across a wide parameter space range. In accordance, our research
objective is to present an overview of the generalized Lotka-Volterra model asymptotic dynamics,
coexistence, and resilience by performing a comprehensive computational exploration integrating
variability in type, intensity, and distribution of interspecific ecological interactions.

To fulfill our objectives, we generate random communities and simulate their temporal evolution
with different structures. This procedure allows us to study populations’ resilience and coexistence
in each generated network. Our method can be broadly described as a series of three steps:

1. Creating a putative structure for the community with given topology and distribution of
interspecific interactions types and intensities, the initial network;

2. Simulating community dynamical evolution computationally using the generalized Lotka-
Volterra model and updating the initial network;

3. Characterizing initial and final communities’ dynamical and topological properties.

This procedure allows us to investigate the effect of different structures upon communities’
stability. Throughout our research, we focus on the resilience and coexistence aspects of ecological
stability.

The dissertation is organized into seven chapters. This first chapter puts forward the setting
of our research, alongside its motivation and core concepts.

In the second chapter, we present an overview of the fundamental concepts that form the
technical and theoretical basis of the dissertation. Central ideas on dynamical systems, complex
networks, and ecology are briefly discussed. The topics we addressed correspond to concepts and
techniques which were used in the development of the dissertation.

Namely, some possible classes of asymptotic dynamics, the state space and parameter space, and
local asymptotic stability are addressed in the dynamical systems section. A fair few topological
measures and random network models are presented alongside canonical definitions of graph theory
in the complex network theory section. In the section related to ecological theory, definitions of
levels of biological organization, ecological interaction and stability are presented.

In chapter three, we apply the theory and concepts presented in the introduction to ecological
communities. We study the analytical properties of the generalized Lotka-Volterra model for one,
two, and N dimensions. For the bidimensional case, we present a general picture of the model
parameter space. We further highlight the correspondence between the type of ecological inter-
actions and attractors. For the N -dimensional case, we present classical results on the existence,
feasibility, local and global stability of equilibrium points. Additionally, we present examples of
other possible dynamics.

We supplement this chapter with a brief revision of the literature concerning the interplay
between structure and dynamics in ecological communities. This revision addresses an ecological
community’s representation as a dynamical system and as a complex network alongside its topo-
logical fingerprints. An overview of current knowledge on the mutual influences of structure and
stability in ecological communities is also presented.

In the fourth chapter, we present the methodology employed in this research. Technical aspects
of the use of Latin Hypercube Sampling (LHS) for the generation of putative ecological networks
and parametrization of the generalized Lotka-Volterra model are addressed. We provide a summary
of the program developed to simulate the construction and dynamics of each ecological community.
We also indicate parameters used in the computations and define the measures performed upon
the generated data.
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In chapter five, we present the results of our numerical simulations. Concerning the distribution
of asymptotic dynamics, our results indicate the ubiquity of unbounded growth of some popula-
tions’ densities in the model for the parametrization procedure adopted. The type of dynamics
was influenced by intensity and type of interactions. We also show that populations’ coexistence
in a community is affected negatively by the proportion of competitive interactions and the net-
work density. Finally, we provide evidence that community resilience is improved with increasing
competition and decreasing interaction strength.

We discuss our findings in chapter six, relating them to current knowledge present in the
literature. In chapter seven, the conclusion, we consider the take-home message of this dissertation.
Additionally, we also point out the caveats of the current research that should be addressed by
future studies.

Lastly, we present additional supporting material in the appendix. The additional resources
encompass tests of the algorithm developed to detect attractors, supplementary analysis, and
results.
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Chapter 2

Fundamental Concepts

2.1 Dynamical Systems Foundations

In the following sections, some of the fundamental elements of dynamical systems theory are
presented. The concepts and methods presented constitute an essential basis for the dissertation.

2.1.1 Basic Concepts

In order to study and understand the natural processes in the world, it is customary and convenient
to focus on a particular set of objects and phenomena that constitute a somewhat cohesive whole.
In practice, this can be anything from a single atom or cell to the entire universe. The central
aspect of this process is identifying this "cohesive whole," i.e., the system, which is conveniently
separated from the rest of the world as being the object of study.

Etymologically, the root of the contemporary word "system" is the Greek word σν′στηµα,
"systema", meaning "what stands together, a body of united elements" (Wedgwood 2017). By its
definition, it is usual that the system itself comprises other interacting constituents or elements.
It is the interaction among these elements, entities, or constituents that often govern eventual
temporal changes on the system and, ultimately, its evolution in time. This process of abstracting
the real system is usually referred to as modeling, and the identification of the system itself can
arguably be seen as a kind of modeling.

It is convenient to use numerical quantities, state variables, that can describe the system (given
the meaning associated with such numbers) to identify and characterize it. The system evolution
in time is then studied by assessing the temporal change of the state variables. When it is possible
to write down an equation describing precisely how we expect these variables to change, we can
build a mathematical model representing the system. 1

The mathematical model should not be seen as a result of empirical observation alone, nor can
it be independent. Therefore, the mathematical model is derived from theoretical expectations for
the system’s phenomenology. In a sense, the model becomes a tool, aiding the scientist to explore
the consequences of assumptions concerning the system. Once a model is constructed, it is possible
to manipulate this representation of the system to derive new results and predictions, with caution
not to expect the model to be "more real than the system itself".

2.1.2 Dynamical Systems

In this work, we use a generalized mathematical model based on the dynamical systems theory to
represent the real system. In the following, we focus on the techniques suitable for the study of
dynamical systems. A dynamical system is described by the state variables {Xi} for which their
functions {Fi} give the system’s temporal evolution.

If the state variables ({Xi}) that characterize the system vary continually in time following a
vectorial function that is composed of the functions {Fi} of the state variables, parameters, and
potentially the time, it is possible to write

1Note that other frameworks are possible for computational and mathematical modeling, such as agent-based
modeling.
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dX1

dt
= F1

(
X1, X2, . . . , Xn, ~β1, ~β2, . . . , ~βn, t

)

dX2

dt
= F2

(
X1, X2, . . . , Xn, ~β1, ~β2, . . . , ~βn, t

)

...
dXn

dt
= Fn

(
X1, X2, . . . , Xn, ~β1, ~β2, . . . , ~βn, t

)
,

This expression can be written in a more succinct way as

d ~X

dt
= ~F

(
~X, ~β, t

)
, (2.1)

in which ~X, ~β represent respectively the vector of state variables and control parameters of the
system. The vectorial function ~F

(
~X, ~β, t

)
denote system’s flow, i.e., the phenomenologically or

mechanistically-derived function describing how each state variable changes in time.
The flow dependency on the state variables indicates their mutual interaction. In contrast, the

control parameters convey information on particular values for the system’s properties (e.g., rates
of interaction, intrinsic birth and death rates for an ecological system). Parameters establish a
connection between the abstract mathematical representation of a function and the real system’s
phenomenology as each choice of parameters’ values lead to particular system behavior, albeit a
different set of parameters may lead to equivalent behavior (see section 2.1.6).

The flow dependency on the state variables indicates the mutual interaction between state
variables. In contrast, the control parameters convey information on particular values for the
system’s properties (e.g., rates of interaction, intrinsic birth, and death rates for an ecological
system).

Usually, the parameters are not time-dependent, i.e., they are constant d~β
dt = 0. A common

justification for this assumption is if the rates at which the parameters change are not at the same
time scale as the rates at which the state variables change. Also, from a mathematical standpoint,
the parameters of a model can unveil structural similarities of very different phenomena if the only
difference between them is the values they can assume.

The state variables do not need to change in time, as they could change in response to changes
in other independent variables, like space or temperature, for instance. Nevertheless, the dynamical
systems framework presented thus far still holds if we study only one independent variable. In the
case that the vector function ~F

(
~X, ~β

)
does not depend on time (independent variable), the system

is said to be an autonomous dynamical system.

2.1.3 State Space
As seen in subsection 2.1.1, the configuration of a dynamical system is determined by the specific
values of the set of state variables. It is then possible to abstract the individual values of each
state variable and consider the set of all possible configurations of a given system, the state space
or phase space. In the state space, each state of the system corresponds to a single point, which
allows the use of geometrical methods in the analysis of the dynamical system.

The temporal evolution of a particular state in a dynamical system is represented by some
curve in the state space, a trajectory, as the flow direction at each point indicates the direction of
evolution of this curve. In other words, the trajectory is always tangent to the flow, and each point
on the phase space corresponds to one unique curve, as no two distinct trajectories may intersect
each other. This property indicates that the state space presents a complete picture of the system’s
evolution for a particular set of parameters.

The dynamical systems theory shifted from trying to completely solve the mathematical sys-
tem, which is always possible for the linear systems, to gaining insights into its state space’s main
properties. The main idea of this "graphical" approach is to describe the flow’s qualitative prop-
erties based on its state space, studying typical invariant sets in such space. Importantly, if some
trajectory starts at an invariant set, it never leaves the invariant set.
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Some examples of typical invariant sets are points that correspond to a stationary flow (equi-
libria) and closed orbits (cycles). Other invariant sets are toroidal regions formed by two or more
incommensurable periodic motions (torus) and even strange attractors, complex topological objects
which are the fingerprint of a chaotic dynamical system. Generically, a topological object on the
state space for which neighboring trajectories converge to is an attractor.

2.1.3.1 Equilibrium Points

Equilibrium points are points in the state space for which the flow is stationary (Monteiro 2011).
In other words, if the system is at an equilibrium point, no temporal change occurs, and the values
of its state variables do not change. An equilibrium point X∗ can be characterized mathematically
as

~X∗, such that ~F
(
~X∗, ~β

)
= 0. (2.2)

In order to find such points, it is possible to solve the set of equations

d ~X

dt
= 0. (2.3)

It is possible to obtain the solution for the system (2.3) both in terms of an analytic expres-
sions2or numerically. Since, in general, the flow is non-linear, solving the system of equations
analytically may be challenging.

Temporal changes of variables are smaller on the neighborhood of equilibrium points, indicating
its study is essential when considering the correspondence between the model and the real system.

2.1.3.2 Limiting Cycles

Limit cycles are closed isolated trajectories on the state space for which near trajectories converge
to or diverge from (Monteiro 2011). The requirement that these trajectories are closed implies that
in the system’s temporal evolution, the same point in the phase space will be revisited at a later
time, i.e.,

~X(t0) = ~X(t0 + T ), (2.4)

in which T denotes the period of such cycle. The cycles must be isolated so that there are
no other closed trajectories infinitesimally near the limit cycle. If all trajectories on a cycle’s
neighborhood converge to it, the cycle is classified as stable, and when some trajectories diverge
from it is correspondingly classified as unstable.

2.1.3.3 Strange Attractors (Chaos)

Strange attractors are a typical fingerprint of chaotic systems. Although there are different ways
to identify chaotic behavior, it is possible to characterize a dynamical system as chaotic if it
has topological transitivity and adjacent trajectories diverge from one another (Thompson and
Stewart 2002). By transitivity, it is implied that each trajectory eventually goes arbitrarily close
to any point in the attractor, i.e., the trajectory is dense. The divergence of adjacent trajectories
indicates sensitivity to initial conditions, i.e., two very close initial conditions will lead to very
distinct trajectories.

2An analytical expression is a mathematical expression composed of well known operations and functions. This
is, in some sense, a subjective statement as different set of mathematical operations and functions can be classified
as "well known" depending on the context. Nevertheless, the important aspect is that calculating a numeric value
for an analytic expression should be relatively straightforward once the value of its parameters are available.
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2.1.4 Forward Invariance
If some region S′ of the state space S, S′ ⊆ S, is such that no trajectory starting in S′ ever leaves
this region, then this region is said to be forward invariant (Hofbauer and Sigmund 1998). This
property is particularly relevant if there is a phenomenological reason why only a subregion of this
state space is meaningful or has essential properties for the modeled system. For instance, this
is the case when considering densities or abundances of populations as state variables. Although
negative values for the densities are, in principle, part of the state space, there is no biological
justification for these values.

Consider, for example, an ecological model describing the dynamics of wolves and sheep in
which the state variables are the densities of wolves and sheep. It makes no sense to talk about
negative densities, so the forward invariance guarantees that no sane, positive densities of wolves
and sheep will evolve into unmeaningful negative densities.

Mathematically, forward invariance can be defined as

~X(t0) ∈ S =⇒ ~X(t0 + t) ∈ S. (2.5)

2.1.5 Stability
Some theoretical results guarantee that the change of behavior of the dynamical systems is associ-
ated with the attracting structures (Fiedler-Ferrara and Prado 1994). Due to that, it is essential
to identify and analyze the stability of those structures. For instance, we say that an equilibrium
point is globally stable if the trajectories converge to it for any initial conditions. Otherwise, it
may be just locally stable but not globally stable.

2.1.5.1 Local Stability of Equilibria

In order to analyze the local stability of the equilibria of a dynamical system, we search for a
linearized version of the system in the neighborhood of such equilibria. It is then necessary to
make a translational transformation in the state space to bring the equilibrium point ( ~X∗) to the
state space’s origin. This transformation is ~X − ~X∗ → ~X ′ so that ~X ′∗ = ~0. We can then expand
(2.1) around the equilibrium point as

dXi

dt
= Fi

(
~X, ~β

)

dXi

dt
=

∞∑

k=0


 1

k!




n∑

j=1

(
Xj −X∗j

) ∂

∂X̄j



k

~Fi

(
~̄X, ~β

)



∣∣∣∣∣∣∣
~̄X= ~X∗

It is not possible to write this expansion in a compact matrix form for its higher terms include
tensors of higher orders. However, it is convenient to write the expansion in the full vector-matrix
form up to the linear term in

(
~X − ~X∗

)
as

d ~X

dt
= 1

0!

(
~X − ~X∗

)0

�
��

��*
0

~F
(
~X∗, ~β

)
+ 1

1!

(
~X − ~X∗

)1

J +O
((

~X − ~X∗
)2
)

d ~X

dt
=
(
~X − ~X∗

)
J

∣∣∣∣
~X= ~X∗

+O
((

~X − ~X∗
)2
)

where we employed a Jacobian application, resulting in a Jacobian matrix (J)

Jij ≡
∂Fi( ~X, ~β)

∂Xj
(2.6)

If we consider the behavior of the system on the neighborhood of ~X∗, we can assume
(
~X − ~X∗

)
≈

0 and disregard higher-order terms so that
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d ~X

dt
≈
(
~X − ~X∗

)
J

∣∣∣∣
~X= ~X∗

~X − ~X∗ → ~X ′

d ~X ′

dt
≈ ~X ′ J

∣∣∣∣
~X′=0

(2.7)

With this linearized system, it is possible to study flow behavior in the neighborhood of equi-
libria. Dropping the notation for the transformed vectors, we have (note that Ẋ = dX

dt )

~̇X ′ ≈ J

∣∣∣∣
~X′=0

~X ′ (2.8)

~̇X ′ ≈ J

∣∣∣∣
~X′=0

(k1~ν1 + k2~ν2 + · · ·+ kn~νn) (2.9)

~̇X ′ ≈
(
k1 J

∣∣∣∣
~X′=0

~ν1 + k2 J

∣∣∣∣
~X′=0

~ν2 + · · ·+ kn J

∣∣∣∣
~X′=0

~νn

)
(2.10)

~̇X ′ ≈ (k1λ1~ν1 + k2λ2~ν2 + · · ·+ knλn~νn) (2.11)
(
k̇1~ν1 + k̇2~ν2 + · · ·+ k̇n~νn

)
≈ (k1λ1~ν1 + k2λ2~ν2 + · · ·+ knλn~νn) (2.12)

k̇i ≈ kiλi (2.13)

⇒ ki(t) ≈ eλitk0i (2.14)

⇒ ~X ′(t) ≈
n∑

i=1

k0ie
λit~νi. (2.15)

It is convenient to express ~X ′ =
∑n
i=1 ki~νi, as the expansion of an arbitrary vector in the

eigenbasis of J assuming the eigenvector equation J~νi = λi~νi

Classification of the Stability of Equilibria As it is possible to see through the examination
of (2.15), if all eigenvalues of the Jacobian matrix have negative real parts, the temporal evolution
of the system, on the neighborhood of an equilibrium point, converges to the equilibrium point
itself, and it is said to be asymptotically stable in Lyapunov’s sense. Since we have carried out a
coordinate transformation to bring the equilibrium point to the origin of the state space, it possible
to see that

Re (λi) < 0∀i⇒ lim
t→∞

eλit = 0⇒ lim
t→∞

~X ′(t) = lim
t→∞

n∑

i=1

k0ie
λit~νi = ~0⇒ lim

t→∞
~X(t) = ~X∗.

If there is at least one eigenvalue with a positive real part, then the limit above does not hold,
and the flux will deviate from the equilibrium point in at least one direction. In this case, the
equilibrium point is said to be unstable in Lyapunov’s sense. Since the approximation (2.15) only
holds on the neighborhood of the equilibrium point, it is not possible to study its behavior on
regions far from equilibrium.

In the intermediate situation, namely, if at least the real part of one eigenvalue is zero and
the real part of others is either zero or negative, the system on equilibrium point’s neighborhood
is stable, but not asymptotically stable, in Lyapunov’s sense. In this case, the system does not
approach the equilibrium point in every direction. However, it does not leave its neighborhood
either, in a way that all trajectories beginning in some arbitrary close region near to the equilibrium
point will remain inside such region.

Concerning the imaginary part of the eigenvalues, if these are nonzero, then the flux has some
oscillatory movement. If the real parts of all eigenvalues are negative (one of the real parts is
positive), then the flow oscillates, converging into the equilibrium point (’escaping’ from the equi-
librium point). If the real parts of all eigenvalues are zero, and the imaginary part is nonzero, the
system oscillates around the equilibrium point without approaching or leaving its neighborhood.
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Classification of Equilibria in 2 dimensions In two dimensions, we have the generic system

Ẋ1 = f( ~X, ~β) (2.16)

Ẋ2 = g( ~X, ~β) (2.17)

which can be linearized by means of a Jacobian matrix, yielding:

J =

(
a11 a12

a21 a22

)
(2.18)

In which the explicit dependence on ~X, ~β was suppressed. We can calculate the eigenvalues
of this Jacobian matrix as the roots of the characteristic equation. Therefore, by calculating
det(J− λI) we have

λ2 − λ(

b=trJ︷ ︸︸ ︷
a11 + a22) +

c=detJ︷ ︸︸ ︷
a11a22 − a12a21

λ± = 1
2

[
b±

√
b2 − 4c

]
⇔ λ± = 1

2

[
tr(J)±

√
(trJ)

2 − 4 det(J)

]

It is then possible to classify the different types of equilibria presented in a 2D system, as in
the table 2.1.5.1.

detJ (trJ)
2 − 4 detJ trJ Re (λ) Im (λ) Classification

− ⇒ + ± {+,−} 0 Saddle point
+ + − − 0 Stable node
+ + + + 0 Unstable node
+ 0 − −(×2) 0 Stable degenerate node
+ 0 + +(×2) 0 Unstable degenerate node
+ − − − ± Stable Spiral
+ − + + ± Unstable Spiral
+ − 0 0 ± Center (neutral)
0 ⇒ + ± {0,±} 0 Line or plane of fixed points

Table 2.2: Classification of fixed points in 2D

2.1.6 Parameter Space

In an analogous manner to the state space, it is possible to think about a system’s parameters
as being the coordinates of a point in an abstract space. The dimensions of this space are the
parameters. Accordingly, the limits of such space are given by the set of allowed values of the
corresponding parameters. As the parameter values are not independent of the real system being
modeled, defining the parameter space is also a part of the modeling effort. In fact, investigat-
ing how different parameter configurations might induce changes in the state space is crucial in
dynamical systems theory.

As each point in parameter space corresponds to a particular set of model parameters, it also
corresponds to a particular state space configuration. In contrast to the state space, there is
no dynamical concept of trajectory in the parameter space for a system with fixed or constant
parameters. Nevertheless, the parameter space study might provide many important insights
into the system’s behavior. Significantly, two neighboring points on the parameter space may
lead to very different state space portraits, i.e., not topologically equivalent. In the case that
two neighboring points in the parameter space do not lead to topologically equivalent state-space
portraits, it is said that there is a bifurcation at the bifurcation point which separates the two
distinct regions.
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In large systems, the components might display an intricate pattern of interactions, with each
component interacting with a potentially distinct subset of the whole system. In such cases, the
system can be represented as a network, with components and their interactions being the nodes
and edges. The parameters in the dynamical systems are then identified with network quantities.
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2.2 Network Theory Foundations

Networks can be understood intuitively as a set of elements that have some kind of pairwise
interaction. These elements can represent neurons, galaxies, cities, people, populations, species,
genes, molecules, among many more. For instance, if there is an interest in studying interactions
among people, each element might be defined as a person. However, the interaction can still be
defined in many different ways, such as friendship, family, work, and collaboration. Remarkably,
the concept of network is part of the current globalized culture as exemplified by the internet,
traffic, plumbing, electrical, and social networks.

Since networks can be constructed to represent all sorts of interacting elements, such repre-
sentation might provide valuable insights into various complex systems and highlight similarities
between seemingly unrelated phenomena. Among the advantages of representing a system as a
network is making the structural features of its interactions evident. In the following, we define
basic concepts in graph and network theory, present some random network models, and provide
an overview of some of the properties/quantities used to classify and study networks. We refer
to graphs when explicitly addressing the mathematical object with which networks can be repre-
sented. The definitions put forward in this section are based on Monteiro (2011) and M. Newman
(2018a).

2.2.1 Basic concepts

A generic graph G is defined as G = (V,E) in which V is the set of all the elements present in the
network, denominated nodes or vertices, and E is the set of all the interactions between elements
of V , the edges. Each edge ek ∈ E denotes an interaction between two elements of V . If the
interactions are symmetrical, the graph is said to be undirected, and an edge can be represented
by a set of two elements ek = {vi, vj} as vi is connected to vj if, and only if, vj is connected to vi.
Conversely, if the interactions are not symmetric, the graph is said to be directed and the edge is
represented by an ordered pair ek = (vi, vj), in which vi, vj ∈ V .

Two nodes vi, vj ∈ V are said to be adjacent if, and only if, there is an edge ek ∈ E such that
ek = (vi, vj). The set of all nodes that are adjacent to a given node vi is the neighborhood of vi and
the degree of the node deg vi is the number of neighbors it has. If all nodes in a graph have the same
degree, this graph is said to be a regular graph or k−regular graph where k indicates its degree. A
subgraph of a given graph G = (V,E) is a graph G = (V ′, E′) such that V ′ ⊆ V ∧ E′ ⊆ E.

Interestingly, nodes that are not adjacent may also be able to exchange information. This
process is essential in many applications of graphs; thus, it is useful to develop some nomenclature
in this sense. In the graph, a walk is a sequence of edges S = (e1, e2, ..., en) such that each edge
starts in the node its predecessor ends, i.e. ek = (vi, vj) ⇐⇒ ek+1 = (vj , vl)∀ k ∈ (1, . . . , n− 1).
The length of a walk is then defined as the number of edges in such walk, |S|. A walk might go over
the same edge multiple times, but this is not the case for a path in the graph, which is a walk with the
additional requirement that no two edges in the sequence S are equal, ei 6= ej∀ei, ej ∈ S if i 6= j.
It is often convenient to denote a walk or path as a sequence of nodes instead so that all adjacent
nodes are linked by an edge, i.e. S = (v1, v2, ..., vn) if ∃ek = (vi, vi+1) ∈ V ∀1 ≤ i < n.
A simple path is then defined as a walk in which no vertex is visited more than once, i.e. S =
(v1, v2, ..., vn), vi ∈ V ∀vi such that vi 6= vj∀vi, vj . The notion of paths can be used to conceptualize
distances between nodes so that the distance between two given nodes lvi,vj = lij is the length of
the shortest path between the two nodes. If there are no paths that connect the nodes vi and vj ,
the distance is then undefined or infinite, lij = ∞. Conversely, the distance from a node to itself
is defined to be 0.

If a path is such that its first and last nodes are the same, this path is classified as a cycle.
In accordance, if all nodes in a cycle except the first/last one are distinct, the cycle is a simple
cycle. If some node in the graph has no neighbors, it is said to be an isolated node. Conversely,
if there is a path between every pair of a given graph’s vertices, it is said to be connected. For
directed graphs, a graph in which there is a path in both directions between each pair of vertices
is said to be strongly connected. In contrast, it is said to be weakly connected if the undirected
graph obtained by replacing all its directed edges with undirected ones is connected. In this sense,
a connected component is the maximally connected subgraph of a given graph; no other node of
the graph can be added to the connected component so that it remains connected. There is always
only one connected component in a connected graph, and every isolated node is also defined as a
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connected component of its respective graph. A complete graph is a graph in which all potential
edges exist.

Networks and graphs can be represented in a multitude of ways. While it is possible to simply
list the sets V and E, some applications benefit of alternative representations such as adjacency
and distance matrix. The entries of adjacency matrix A = (aij) are 1 if there is an edge connecting
vi to vj and 0 otherwise. Therefore

aij =

{
1 (vi, vj) ∈ E
0 (vi, vj) 6∈ E

.

On the other hand, each entry of the distance matrix B = (bij) is given by the distance between
nodes, i.e. bij = lij .

The definitions and nomenclature put forward in this section allow for a common language to
address network properties and are used throughout the text.

2.2.2 Topological Properties
In order to numerically characterize the topology of both observed and theoretical networks, it is
necessary to define some metrics that reflect the topological information. In the following, different
numerical topological properties are defined and exemplified by its characteristic values.

2.2.2.1 Number of Nodes (Order) - N

Order indicates the number of nodes in a given network. For a graph G = (V,E), the order is the
number of elements in the V set of nodes, N = |V |.

2.2.2.2 Number of Edges (Size) - M

Size indicates the number of edges in a given network. For a graph G = (V,E), the size is the
number of elements in the E set of edges, M = |E|.

2.2.2.3 Density - D

The density of a network, also referred to as connectance, measures the ratio between the size of
the graph and the maximum size it could have, given its order. The minimum density for a network
is D = 0 for a network composed entirely of isolated nodes and D = 1 for the complete graph.

For an undirected graph, the network density is defined as

D =
2M

N(N − 1)
, (2.19)

while for directed graphs, the network density is

D =
M

N(N − 1)
. (2.20)

The difference between both definitions is a consequence that for a given pair of nodes vi, vj ,
there is only one possible edge ek = {vi, vj} in an undirected network, but there are two possible
edges in a directed network, namely el = (vi, vj) and em = (vj , vi).

2.2.2.4 Degree Distribution - P (k)

The degree distribution of all nodes in a network is a very representative measure of its topology.
Such distribution provides the probability that a randomly selected node has degree k. It is then
defined as

P (k) =
1

N
|{vi ∈ V if deg vi = k}|, (2.21)
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in which |X| indicates the number of elements in the set X. As a probability, the sum of P (k)
for all possible degrees k in the network is one:

kmax∑

k=kmin

P (k) = 1

2.2.2.5 Assortativity - r

Assortativity is a topological measure that assesses nodes’ tendency to be connected to other nodes
with similar properties: networks in which nodes are connected with others of similar (dissimilar)
properties are classified as assortative (disassortative) networks (M. E. J. Newman 2003). This
measure is also referred to as mixing pattern in the literature. Assortativity can be measured both
for categorical and scalar properties, and it is commonly applied to node degree, in which case it
is named degree assortativity. In its basics, this metric measures the correlation of pair of nodes
in relation to some property attributed to the nodes. It can be assessed with many of the tools
available to measure correlations.

Categorical Node Characteristics Following the foundational definitions by M. E. J. Newman
(2003) we have:

r =

∑
i eii −

∑
i aibi

1−∑i aibi
(2.22)

in which the following definitions hold:

(e)ij = eij fraction edges that connect nodes with characteristic i and j;

ai, bi fraction of each type of edge end that is attached to a node with charateristic i.

These variables satisfy the sum rules:

∑

ij

eij = 1,
∑

j

eij = ai,
∑

i

eij = bj (2.23)

It is also possible to rewrite expression (2.22) in matricial form noting that the trace of a
matrix can be given as TrA =

∑
iAii and for a given matrix product C = AB⇔ cij =

∑
k aikbkj .

Therefore we have

∑

k

akbk =
∑

k

(
∑

j

ekj)(
∑

i

eik)

=
∑

i

∑

j

∑

k

eikekj

=
∑

i

∑

j

(e2)ij

=
∥∥e2
∥∥,

In which the norm ‖A‖ indicates the sum of all the elements in matrix A. From the above, it
is possible to rewrite expression (2.22) as

r =
Tr e−

∥∥e2
∥∥

1− ‖e2‖ . (2.24)

The assortativity is bounded in the range −1 ≤ r ≤ 1. Negative values indicate a disassortative
network in which nodes of distinct characteristics are systematically connected. In contrast, posi-
tive values indicate an assortative network in which nodes with similar characteristics are connected
among themselves.
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Scalar Node Characteristics The general definition of linear correlation between two random
variables X,Y is

ρXY =
E(XY )− E(X)E(Y )√

E(X2)− E(X)
2
√
E(Y 2)− E(Y )

2
(2.25)

For node characteristics that are described by integers, the assortativity index presented thus
far is not adequate. It is then necessary to lay a methodological basis to answer questions con-
cerning tendencies of these connections, e.g., "are richer individuals more likely to have other rich
individuals as their friends?". In order to do so, it is convenient to make use of the mixing matrix
e once again, in which the element eij presents the fraction of edges that connect a node with
characteristic value i to other with characteristic value j. Under these conditions, the assortativity
is

r =

∑
xy xy(exy − axby)

σaσb
, (2.26)

in which σa, σb are the standard deviations of a and b. Expression (2.26) follows from (2.25),
by observing that

E(X) = xax =
∑

y

xexy

E(Y ) = yby =
∑

x

yexy

E(XY ) = xyexy

σa =
√
E(X2)− E(X)2

σb =
√
E(Y 2)− E(Y )2.

Equivalently, for continuous variables we define the joint probability density e(x, y) and

E(X) = xa(x) =

∫
xe(x, y) dy

E(Y ) = yb(y) =

∫
ye(x, y) dx

E(XY ) =

∫∫
xye(x, y) dx dy .

For a continuous variable, the assortativity can be calculated as

r =

∫∫
xy(e(x, y)− a(x)b(y)) dxdy

σaσb
, (2.27)

Once again, the value of the assortativity is bounded (−1 ≤ r ≤ 1).

Degree Assortativity categorical or numerical characteristics. Examples of such characteristics
are gender (categorical) and age (numerical) in social networks or developmental stage (categori-
cal) and abundance (numerical) in ecological networks. Nevertheless, when solely considering the
topological structure of graphs, it is still possible to calculate assortativity based on topological
characteristics, as node degree. Indeed, node degree assortativity has been extensively studied
(Noldus and Van Mieghem 2015). In order to avoid redundancy when considering a pair of nodes
connected by an edge, the remaining degree is used (one less than the node’s degree).

To calculate the probability that a randomly selected edge is incident on a vertex with remaining
degree k, consider that the total number of edges M in the network is
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M = Nk

= N
∑

k

kP (k),

in which k is the average degree of the network. Additionally, the number of edges linked to a
node with degree k is NkP (k). Thus, the remain degree distribution is

qk =
(k + 1)pk+1∑

k kP (k)
. (2.28)

Defining ejk to be the fraction of edges connecting nodes with remaining degrees j and k, it
follows that ejk and qk are related as

∑

j

ejk = qk. (2.29)

The degree assortativity can then be calculated as

rD =

∑
jk jk(ejk − qjqk)

σ2
q

, (2.30)

in which σq is the standard deviation of the remaining degree distribution qk. Alternatively,
for a directed network

rD =

∑
jk jk

(
ejk − qinj qout

k

)

σin
q σ

out
q

, (2.31)

in which superscripts �in,�out denote variables related to remaining in-degree and out-degree,
respectively.

2.2.2.6 Average Shortest Path Length - 〈l〉

The average shortest path length, also referred to as average distance, captures the central tendency
of distances between pairs of nodes in a network. Since the distance between two nodes that are
not connected diverges, this measure is undefined for unconnected networks. The definition of the
average shortest path length is similar for directed and undirected networks, noting that lij = lji
for undirected networks. Thus

〈l〉 =
1

N(N − 1)

N∑

i=1

N∑

j=1

lij . (2.32)

2.2.2.7 Diameter - d

While the average shortest path length accounts for the average distance between the nodes of
a network, the diameter measures the maximum shortest path length among the shortest paths
between all pairs of nodes in the graph. Therefore, the diameter is an answer to the question "how
far from each other can a pair of nodes be in a given graph?". Mathematically, it is possible to
define it as

d = max {lij∀i, j}. (2.33)
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2.2.2.8 Clustering coefficients - C and 〈C〉

Clustering measures the tendency of nodes to cluster together. It provides insight on whether the
neighbors of an arbitrary node are also neighbors among themselves, both locally and globally.

The local cluster coefficient, Ci, proposed by Watts and Strogatz (1998), measures the propor-
tion of edges that exist between the neighbors of a given node in relation to the maximum number
of edges that could be expected from the nodes’ degree. In other words, it is the density of the
subgraph constructed with the neighbors of a given node. If the given node has degree 0 or 1,
then there are no possible links between its neighbors, and the local clustering is 0. It can thus be
defined as

Ci =
2ci

ki(ki − 1)
, (2.34)

(2.35)

for undirected networks, and

Ci =
ci

ki(ki − 1)
(2.36)

for directed ones. The coefficient ci, the number of links between neighbors, can be calculated
employing the adjacency matrix as

ci =
1

2

N∑

j=1

N∑

l=1

aijajlali.

In order to characterize network-wide properties, it is possible to define the average local clus-
tering coefficient as

〈C〉 =
1

N

N∑

i=1

Ci. (2.37)

It is also possible to estimate the clustering tendency of the entire network. The global clustering
coefficient is then defined as the ratio of closed triplets in relation to all triplets in the network. A
triplet is defined as a simple path composed of three nodes connected by two edges. Alternatively,
as a triangle is composed of three closed triplets (centered in each one of its vertices), the global
clustering is three times the ratio of the numbers of triangles over the total number of triplets in
the network:

C =

∑
i number of triplets centered in i
total number of possible triplets

=
3× number of triangles

total number of possible triplets
.

This index can be calculated using the adjacency matrix as

C =

∑N
i=1

∑N
j=1

∑N
l=1 aijajlali∑N

i=1 ki(ki − 1)
(2.38)

From the definitions of both the local and global clustering coefficients, it is possible to show
that global clustering is a weighted average of local clusterings with coefficients ki(ki − 1). As a
result, the global clustering coefficient is more sensitive to the clustering of more connected nodes
than the average of the local clustering coefficient for the entire network.
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2.2.3 Models of Random Graphs

When studying systems described as networks, it is relevant to understand which processes generate
that particular network topology. In this sense, it is crucial to develop algorithms with explicit
assumptions to generate networks. The relation between graph properties and graph generation
assumptions can then be studied in detail.

In the following, we present some canonical models to generate random graphs.

2.2.3.1 GN,M Random Graph (Erdös and Rényi 1959)

Erdős and Rényi proposed an algorithm to sample the space of graphs with N nodes and M edges
uniformly (Erdös and Rényi 1959). Given N labelled nodes, V = {v1, n2, . . . , vN}, the algorithm
consist in constructing the set of edges E by choosing at random one of the N(N − 1)

/
2 possible

edges so that every edge has a probability 2
/
N(N − 1) of being chosen. The chosen edge is now

part of the set E of the network and is removed from the available choices. A new edge is selected
at random, from the N(N −1)

/
2−1 edges and this process is repeated until the number of chosen

edges is equal to M .
The resulting network is a random element of the ensemble of networks with N labeled nodes

andM edges. For fixed N andM , the number of distinct graphs that can be constructed is
((N

2

)

M

)
.

The parameters used as input in this algorithm are the total number of nodes N and edges M .
It is also possible to construct a similar random graph with a different algorithm. The GN,p model
associates a probability p to each possible edge in a graph with N nodes. The expected number of
edges in this model isM ≈ pN(N−1)

/
2 and for a large number of nodes, these models of Random

Graphs are equivalent.

2.2.3.2 Random Regular Graph

In opposition of the GN,M random graph described above, the random regular graph is k−regular.
One possible algorithm to construct this graph is associating each node with k "half-edges". Then,
a pair of "half-edges" is chosen at random and connected to form an edge. The process is repeated
until no "half-edges" remain. Extra care must be taken to avoid self-loops, i.e., edges having the
same node at both of its endpoints. This model corresponds to a particular case of the configuration
model, which generates random graphs with a prescribed sequence of degrees (M. Newman 2018b).

For this category of graphs, the algorithm samples networks uniformly from the ensemble of
k−regular networks. This model’s input parameters are the number of nodes N and the degree k.

2.2.3.3 Preferential Attachment Graph (Barabási and Albert 1999)

The model proposed by Barabási and Albert (1999) is based on two main processes: growth and
preferential attachment. These two processes combined lead to a network topology that displays
distinct node degrees distributions in the form P (k) = ak−γ .

The model can also be described as an algorithm: The algorithm starts from a set of k0 isolated
nodes. A new node is then added to the network at each interaction and connects with k nodes.
The probability p of connection with a given node vi, that is already in the network, is proportional
to the vertex degree ki so that p(ki) = ki

/∑
j kj . After n iterations, the network will be composed

of k0 + n vertices and nk edges. Making k0 = k, the two parameters used in the definition of the
model are N and k.

2.2.3.4 Small World Graph (Watts and Strogatz 1998)

The model proposed by Duncan Watts and Steven Strogatz in 1998 reproduces the effect of having
a quasi-regular network with few edges between random nodes (Watts and Strogatz 1998). This
small modification in the network can bring dramatic changes in the topological features of the
network. The underlying algorithm starts from a k−regular lattice with N nodes. Each of the
Nk edges is then rewired to other randomly selected nodes with probability p. For large values of
p ≈ 1, the network is indistinguishable from a GN,M (N,Nk) random network.

This model is termed "small-world" in reference to the topological property of the same name.
A network is said to be a small-world network (or to satisfy the small-world property) if its average
shortest path is small relative to the number of nodes in the network. More specifically, the average
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shortest path length or the diameter of the network grows logarithmically (or sub-logarithmically)
as the number of nodes tends to infinity.

The parameters used to construct a random network through this model are the number of
nodes N , degree of initial regular network k and rewiring probability p.

2.2.4 Random Graphs’ Topological Parameters

As mentioned, much of the interest in using random algorithms (or models) of networks is due
to the possibility of addressing typical values for different topological properties. In the following
sections, numerical simulations are performed in order to display the distribution of typical values.
The expected value of density is analytically derived for previously defined topologies.

2.2.4.1 Density

For the random undirected graph, the density can be directly calculated from its definition (2.19).
However, for other network models, it is necessary to derive the number of edges in the final

network. For the random regular and small-world model, this number is equivalent to that of a
regular network with N nodes with degree k, therefore the number of edges are Nk

/
2 and the final

density is D = k
/

(N − 1).
In the scale free model the algorithm starts from a network with k isolated nodes, therefore

the total number of edges in the final network is (N − k) ∗ k and thus the expected density is
D = 2k(N − k)

/
N(N − 1) .

2.2.4.2 Estimating topological indices for network models

In figure 2.1, the distribution of the average shortest path length, diameter, global clustering,
and degree assortativity for different topologies are shown. The topologies analyzed were used to
construct the ecological communities (see chapter 4). Replicates of each network topology were
simulated, then the topological properties were measured, and its distribution was represented
as violin plots. We can observe that most of the models are associated with small values of the
average shortest path length and diameter, which is a consequence of the edge configuration of the
network. Small-world topologies with a low probability of reconnection display a comparatively
larger value for all measured parameters. However, the networks constructed with p = 0.1 have the
diameter and average shortest path length values equivalent to those with random and random-
regular topologies. Concerning the diameter, the topologies do not present variability, as indicated
by the lack of spread in the violin plot’s kernel density function, except for the small-world model
with a low probability of reconnection, which presents variability in network diameter.

Small-world topologies are also more clustered in comparison to the other ones. This effect is a
consequence of its similarity with a perfectly regular cyclic network. Note that the clustering tends
to be higher since most neighbors are connected among themselves in cyclic graphs. All topologies
display degree assortativity close to zero. The degree assortativity of random regular networks is
not defined since its calculation requires the degree distribution’s standard deviation and it is not
defined for regular networks.

2.2.4.3 Estimating Degree Distribution for Network models

As mentioned, the degree distribution is a distinctive feature of network topology. The degree
distribution can serve as a basis for calculating many other properties such as degree assortativity,
density, and diameter. In the figures 2.2 and 2.3 the degree distribution of the networks models
presented in section 2.2.3 are shown. Note that the degree distribution of a k−regular network is

P (k′) =

{
1 k′ = k

0 k′ 6= k
, (2.39)

i.e., the probability of a node having degree k is 100%, while the probability of having a different
degree is 0. In accordance, the degree distribution of the random regular model is not shown.

Since the small-world algorithm starts from a k−regular network and rewires them with indi-
vidual probability p, it is expected that for small values of p this algorithm produces a network in

18



which most nodes have degrees close to k. The distribution of degrees for small-world networks
is represented in figure 2.2, through the Complementary Cumulative Density Function (CCDF).
The abrupt change of the CCDF is also indicative that most nodes have degrees close to k. For
small values of p, the small-world networks had an exponential degree distribution with a small
standard deviation. Considering larger values of p also gives the expected result of an increase in
the distribution’s standard deviation while preserving its mean. For the largest value of p = 0.1,
it is possible to perceive the tendency of the small-world topology to produce networks that are
increasingly similar to the random topology.

For the GN,M random graph, M edges are placed at random among N nodes. As the chance
of a given node being an endpoint of a given edge is the same for all nodes, it is reasonable to
expect that the average degree of a node is 〈k〉 ≈ 2M

/
N , number of endpoints divided by number

of nodes. For N = 400 and D = 2M
/
N(N − 1) = 0.1 we have M = 7980 and thus 〈k〉 ≈ 39.9,

which is precisely the mean value of the normal distribution fitted for the GN,M random graph
simulation data.

The degree distribution of the preferential attachment network topology is remarkably distinct
from the other degree distributions presented thus far. This difference is a consequence of this
topology’s underlying algorithm, i.e., nodes with different degrees have different probabilities of
receiving further connections. According to M. Newman (2018a), if at each evolution step a node
with degree c is added to the network, the probability distribution of this model is

P (k) =
2c(c+ 1)

k(k + 1)(k + 2)
(2.40)

and it follows a power law as it is possible to see that P (k′) ∝ 1
/
k3. In figure 2.3, the theoretical

probability density function is plotted alongside data from numerical simulations. It is possible to
see a remarkable agreement between predictions in data despite the effects of the limited number
of nodes in the network.
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Figure 2.1: Distribution of Topological Properties for in Random Graphs: the distri-
bution of shortest pathlength (〈l〉), diameter (d), clustering coefficient (C), degree assortativity
(r) for some of the random network models presented in section 2.2.3 is shown. The simulated
topologies were GN,M random graph – ER (blue), random regular graph – RG (orange), and small-
world model with different probabilities of reconnection: p = 0.1 – WS0.1 (dark green), p = 0.01 –
WS-0.01 (green), p = 0.001 – WS-0.001 (light green). 100 networks of each model with 400 nodes
and density D = 0.1 were simulated. The medians of measures for each topology are indicated by
a diamond-shaped marker presented in the top row. Results aggregated by network topology are
shown in the violin plots. The "violins" contour is a continuous generalization of a histogram, i.e.,
each distribution’s kernel density estimation. The first and third quartiles are indicated by dotted
vertical lines inside each distribution and dashed lines indicating the median. Note that individual
plots, in general, do not share the x-axis.
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Figure 2.2: Complementary Cumulative Density Function (CCDF) of Degrees for
Watts-Strogatz (WS) and Erdős-Rènyi (ER) models: For this analysis, 100 networks of each
model with 400 nodes and density D = 0.1 were simulated. The simulated topologies were GN,M
random graph – ER (blue), and small-world model with different probabilities of reconnection:
p = 0.1 – WS0.1 (dark green), p = 0.01 – WS-0.01 (green), p = 0.001 – WS-0.001 (light green).
The different rewiring probabilities p in the small world model are indicated by the suffixes. Full
lines indicate fitted normal distribution and points are derived from numeric simulations’ data.
The CCFF for all models fits normal distribution with similar mean (µ ≈ 40). The values of
Standard deviation (σ) of nodes’ degree are σ = 0.2, σ = 0.6, σ = 2 and σ = 6 for WS0.001,
WS0.01, WS0.1 and ER respectively.
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Figure 2.3: Degree distribution of preferential attachment network topology (BA)
follows a power law: Simulated data for the BA topology are plotted alongside the theoretical
expectation given by equation (2.40). The data was composed by 100 simulated networks with
N = 400 nodes and c = 21 edges added at each iteration. The black dashed line represents the
theoretical prediction of the probability density function , equation (2.40), with c = 21.
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2.3 Ecological Foundations

In the following sections, elements of the ecological theory upon which this research is constructed
are presented to introduce crucial concepts and nomenclature used in this work.

2.3.1 Levels of Biological Organization: Individual, Population, Com-
munity

In a nutshell, ecology is dedicated to understanding the spatial-temporal interactions of living
matter with its surrounding biotic and abiotic environment. Since organisms interact with each
other and with their surrounding environment across multiple spatial-temporal scales, and accord-
ing to a plethora of mechanisms, investigations in ecology can be partitioned in the sense of levels
of biological organization: individual organisms, the population of organisms, or community of
populations.

Individual organisms are the building blocks of the population and community levels. It is
related to the specific characteristics of a living being, such as its lifespan and morphology. Pop-
ulations are groups of individual organisms of the same species that interact due to an interest
in the same resources, usually food, shelter, and a mating partner. These interactions are de-
nominated intra-specific since they represent processes occurring among individuals of the same
population. Finally, biological communities are a group of populations that interact either posi-
tively or negatively, a process denominated inter-specific interaction since it occurs among different
populations.

It is essential to acknowledge the changes in perspective when navigating across organizational
levels. For instance, the lifespan of an individual organism is well defined, but it only contributes
to the average lifespan at the population level. In this sense, the lifespan of a particular organism
in a population may not be of much relevance, as long as the population is sufficiently abundant.
Inversely, since the community comprises various interacting populations, its composition can
slowly drift as the populations’ densities fluctuate, new populations invade, and others go extinct
at the expense of individual life histories. In the present work, we are particularly interested in
understanding how interacting populations can shape ecological communities. We use populations,
individuals that interact in a similar manner, as a unit of interaction. Therefore we focus on the
community level of biological organization.

2.3.2 Ecological Interactions

Ecological populations and communities emerge from interactions. Precisely, ecological populations
are built upon interactions between individuals of the same species, denominated as intra-specific
interactions. In contrast, ecological communities are built from the interactions between different
populations, denominated inter-specific interactions.

Intra-specific interactions occur due to the mutual interest of individuals of the same species in
the same resources, usually related to their survival and reproduction. While individuals’ repro-
duction fosters the population’s density, the increase in density relates to an increased demand for
crucial resources. Notably, resources are limited and limiting. Therefore it generates competition
between the individuals in a population and ultimately sets the maximal number of individuals sup-
ported in a given environment. This maximum number is usually referred to as carrying capacity,
usually denoted by K in mathematical models.

In an environment with abundant resources, population’s growth can be estimated by the
average number of offspring the species produces in a given time frame, referred to as the average
growth rate (b), minus the average number of individual deaths in the same time frame, referred
to as the average death rate (d). This average of births and deaths in a population is also called
the population’s intrinsic growth rate, usually represented as a r. As the density of the population
increases, the population’s growth rate decreases, which can be ascribed to a density-dependent
increase in the death rate, d. The dynamics of a single population in an environment with finite
resources can then be modeled by the logistic equation below (Hofbauer and Sigmund 1998)

dN

dt
= rN

(
1− N

K

)
. (2.41)
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On the other hand, interactions are not necessarily competitive. Interspecific interactions refer
to the interactions occurring between different populations. While many distinct processes medi-
ate these interactions, their results can usually be observed in changes in the attributes of both
populations, usually their abundance, density or biomass. Here we will focus on the density of
populations, but abundance is at times used interchangeably.

There are three general types of interspecific interaction: competition (-/-) – when both pop-
ulations suffer a decrease in their density due to the interaction; exploitation (+/-) – when one
population suffer an increase in their density at the expense of the other; and mutualism (+/+)
– when the interaction affects the densities of both populations positively. Notably, there are
particular types of interactions in which only one population suffers the impact of the interac-
tion: amensalism (0/-), which is considered a particular case of competition; and commensalism
(0/+), which is considered a particular case of mutualism. In the present work, we are particularly
interested in inter-specific pairwise interactions in which both populations are affected by their
interaction, namely competition, exploitation, and mutualism.

2.3.3 Ecological Community
As an emergent property of interacting populations, the structure of an ecological community can
be studied through the lenses of its compositional, relational, distribution, and functional traits.

Compositional traits are related to the actual populations that together build the community.
We can study this aspect by estimating the richness and diversity of the ecological community,
which refers, respectively, to the number of populations composing a community and the equitabil-
ity of the abundance distribution of such populations. Relational traits refer to the interactions
among the populations, specifically in the types of interactions, their strengths, and their dis-
tribution among pairs of populations. Functional traits are measures of the overall role of the
community. Questions like "What is the production of a forest?" are related to the functional
perspective of the community. Finally, the distribution traits are considered when addressing the
characteristics of a community over a gradient, which is commonly the physical space, but can also
be other abiotic variables such as temperature.

These perspectives are firmly linked, as composition changes might affect the community rela-
tions, function, and ultimately distribution. In the present work, we give special attention to the
compositional and relational aspects of ecological communities. Namely, we investigate the com-
munity richness, types of interaction, the strength of interactions, and their distribution among
pairs of interacting populations. These community attributes can be abstracted in what is denom-
inated ecological community topology, encapsulating information on which and how populations
interact in a given community.

2.3.4 Stability of Ecological Communities
The notion of the ecological stability of a community can be approached in many ways. Different
aspects of stability can be investigated, such as invasibility, resistance, resilience, permanence, and
robustness, which are not mutually exclusive (Pascual and Dunne 2006). The invasibility, also
referred to as external stability, is related to how easily and frequently new species could invade it
(Pascual and Dunne 2006; Qian and Akçay 2020).

The persistence of a population in a given region is related to its interactions with the surround-
ing environment and other populations. In constant biotic and abiotic conditions, a population
might persist in constant density. In other scenarios, spatial-temporal environmental variability
and complex biotic interactions might lead to long term cyclic fluctuations of densities. Acyclic
fluctuations are also possible, e.g., the chaotic temporal evolution of densities.

As populations are the building blocks of ecological communities, the persistence of populations
directly impacts the properties of ecological communities. If all the populations that compose a
community persist, this is translated into community persistence. It is then relevant to study
whether this persistence is stable or if any minor disturbance or variation in the conditions might
disrupt the community.

Resistance is related to how much perturbation a community can endure while staying rela-
tively constant, whereas resilience is related to how quickly a community returns to an original
equilibrium state after a perturbation. Permanence requires community persistence even if a per-
turbation drives one of its population very close to extinction. Community robustness accounts for
the variability of the populations in the face of environmental or populational variations, with more
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robust communities displaying overall less variability in the face of environmental or populational
variations.

Notably, most of the above-mentioned aspects of community stability assume the existence of
an equilibrium point where all populations co-exist, and the stability of this point of equilibrium
is tested by perturbing the community. In the present work, we focus on the resilience aspect of
community stability.
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Chapter 3

Application of Fundamental
Concepts to Ecological Communities

3.1 Generalized Lotka-Volterra Model Analytical Properties

In this chapter, some analytical properties of the generalized Lotka-Volterra model (gLV) are stud-
ied and derived. Many of the techniques used are explained or based on the concepts presented
in the section 2.1. While there is an attempt to rediscover many of the canonical results based on
first principles, many of the developments presented here are extensively based on the literature
(Hofbauer and Sigmund 1998; Takeuchi 1996; Allesina 2020). Nevertheless, the presentation of the
complete map of the generalized Lotka-Volterra for two interacting populations (section 3.1.3) and
the algorithm for boundedness verification of a given N -dimensional interacting matrix (3.1.4.7)
are original results. In order to maintain generality, an attempt is made to use analytical develop-
ments as much as possible. However, some sections also present numerical results to illustrate or
investigate properties for which analytical treatment was insufficient or impractical.

3.1.1 The Generalized Lotka-Volterra Model (gLV)

The gLV model can be formulated as

dXi

dt
= riXi


1 +

N∑

j=1

aijXj


 i = 1, 2, . . . , N, (3.1)

in which ri is the instrisic growth rate of population i and the matrix of interaction is denoted
by A with elements aij . The elements aij of this matrix indicate the influence of population j on
population’s i growth rate steaming from the interaction between them. In particular, the element
aii supposed negative indicates the self-limiting intraspecific competition and it is related to the
population’s carrying capacity as aii = −1/Ki. That is, the value of aii is the inverse of the density
of Xi necessary to change its growth rate by 100%. Whether this change increases or decreases the
effective growth rate depends on the sign of aii. The values of all elements aij can be understood
similarly: aij is the inverse of the density of Xj that is necessary to change the growth rate of Xi

by 100%.
Small values for aij indicate weak interaction between populations so that variances on Xj ’s

density have little effect on Xi’s growth rate, and vice versa. A value zero (aij = 0) indicate no
influence of Xj upon Xi.

In this framework, the ecological interactions between two populations i, j will be given by the
values of the mutual interaction coefficients aij , aji. If these coefficients are both positive, there
is a mutualistic interaction between i, j while negative values indicate competitive interactions. If
the coefficients have opposite signs, it indicates an exploitative interaction. For instance, if aij > 0
and aji < 0 the interaction benefits population Xi while it harms population Xj . This scenario
corresponds to the case that the population Xi predates the population Xj .
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In the following, we study the model for different total number of populations in the community.
Starting from the simplest case of an isolated population and up to general case with an arbitrary
number of N populations interacting.

3.1.2 Single Population Dynamics

For a single population, the model (3.1) can be written as

dX

dt
= rX(1 + aX), (3.2)

which is precisely the logistic model (2.41), with N → X and K → −1
/
a.

3.1.2.1 Equilibrium Points

Setting dX
dt = 0 in equation (3.2) leads to:

{
X ′ = 0

X ′′ = −1
/
a
. (3.3)

Therefore there are two possible equilibrium points: one at which the density of the population
is null (X ′) and another for which the population is at its carrying capacity (X ′′). X ′′ indicates
the population density at which intraspecific competition prevents further increases in this density.
It is then convenient to study what is the stability of these equilibrium points.

3.1.2.2 Stability of Equilibrium Points

For one-dimensional systems, the Jacobian is a 1−matrix and equivalent to a scalar. For the model
(3.2), it can be simply calculated deriving its right-hand side by X, therefore

J = r(1− 2aX), (3.4)

which is also its eigenvalue, λ. Evaluating these eigenvalues at the equilibrium points, it follows
that

λ = r(1− 2aX) (3.5)
{
λ
∣∣
X=0

= r

λ
∣∣
X=X′′

= −r . (3.6)

Therefore, it is possible to see that for a single population dynamics with positive growth rate
r > 0 the stable equilibrium point is the population having a constant density K = −1

/
a, while

for a population with negative growth rate r < 0, the equilibrium point with no density is stable.
This transition occurs through a transcritical bifurcation at r = 0. With no intrinsic growth, the
model (3.2) does not capture the dynamics of an evolving population as it predicts no change in
density irrespective of the initial density of the population.

3.1.3 Two interacting populations

For a situation in which only two populations are interacting, the gLV model is





dX1

dT
= r1X1(1 + a11X1 + a12X2)

dX2

dT
= r2X2(1 + a22X2 + a21X1)

. (3.7)
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3.1.3.1 Nondimensionalization

For the model (3.7) there are now six parameters and two variables for describing the densities
of the populations besides the independent variable, time. The current formulation of the model
is agnostic concerning the units used to measure each of these variables. However, it is possible
to simplify the mathematical formulation of the model by appropriately rescaling the variables.
A useful technique to accomplish such a goal is the model’s nondimensionalization (Witelski and
Bowen 2015). In order to do so, we note that parameters ri have dimensions 1

/
time and parameters

aij have dimensions 1
/
density. By rescaling the populations density Xi = Kixi and time T = τt

so that xi, t are dimensionless variables, the model can be rewritten as





dx1

dt
= τr1x1(1 + a11K1x1 + a12K2x2)

dx2

dt
= τr2x2(1 + a22K2x2 + a21K1x1)

.

Defining τ = 1
/
r1, Ki = −1

/
aii, a

′
ij = aijKj and r′ = τr2 = r2

/
r1 it is possible to simplify

the model as





dx1

dt
= x1(1− x1 + a′12x2)

dx2

dt
= r′x2(1− x2 + a′21x1)

. (3.8)

The model presented in the system of equations (3.8) is equivalent to model (3.7), although it
has only three parameters. Note however that this parametrization does not hold for r1 = 0 or
aii = 0. In all the analytical developments we assume positive growth rates for all populations
considered, i.e. ri > 0 and therefore r1 6= 0. Additionally, it is ecologically reasonable that aii 6= 0
for all populations as intraspecific competition implies aii < 0.

3.1.3.2 Equilibrium Points

Setting
dxi
dt

= 0 in the simplified model (3.8) results in the algebraic system of equations




x1(1− x1 + a′12x2) = 0

r′x2(1− x2 + a′21x1) = 0
, (3.9)

for which the solutions are

E0 = {0, 0} (3.10)
E1 = {1, 0} (3.11)
E2 = {0, 1} (3.12)

E3 =

{
1 + a′12

1− a′12a
′
21

,
1 + a′21

1− a′12a
′
21

}
. (3.13)

The last solution, E3, can be found under the assumption that xi 6= 0, so that





1− x1 + a′12x2 = 0

1− x2 + a′21x1 = 0

=⇒





1 + a′12 + a′12a
′
21x1 = x1

1 + a′21 + a′12a
′
21x2 = x2

=⇒




x1 = (1 + a′12)

/
(1− a′12a

′
21)

x2 = (1 + a′21)
/

(1− a′12a
′
21)

.
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Therefore, there are four possible equilibrium points: one solution in which all the populations
are extinct; Two solutions in which one of the population is extinct and the other is at its carrying
capacity density xi = 1 =⇒ Xi = Ki; A final solution in which both populations coexist at some
non-zero density.

3.1.3.3 Local Stability of Equilibria

In order to study stability of the equilibrium points, the Jacobian matrix of the model (3.8) can
be calculated as

J =

(
1− 2x1 + a′12x2 a′12x1

r′a′21x2 r′(1− 2x2 + a′21x1)

)
(3.14)

It is then possible to study the stability of each solution by calculating the eigenvalues of the
Jacobian matrix evaluated at each of the equilibrium points. In the following, this analysis is
presented for each solution, results are synthesized, and limit cases are discussed.

Stability of E0 The Jacobian matrix (3.14) evaluated at the equilibrium point is

J

∣∣∣∣
~x=E0

=

(
1 0
0 r′

)
(3.15)

and its eigenvalues are λ′ = 1 and λ′′ = r′. Since λ′ > 0 and λ′′ > 0, this equilibrium point is
unstable.

Stability of E1 The Jacobian matrix (3.14) evaluated at the equilibrium point is

J

∣∣∣∣
~x=E1

=

(
−1 a′12

0 r′(1 + a′21)

)
(3.16)

which has eigenvalues λ′ = −1 and λ′′ = r′(1 + a′21). This equilibrium point is thus stable if, and
only if, a′21 < −1 since r′ > 0 by assumption. Therefore, this solution can only be stable if there
is a strong negative influence of x1 upon x2. A value a′21 = −1 would imply a 100% decrease on
x2’s growth rate and thus a′21 < −1 indicates that the density of population x2 decreases over time
whenever population x1 is at its carrying capacity.

Stability of E2 The Jacobian matrix (3.14) evaluated at the equilibrium point is

J

∣∣∣∣
~x=E2

=

(
1 + a′12 0
r′a′21 −r′

)
(3.17)

which has eigenvalues λ′ = −r′ and λ′′ = (1 + a′12).
In a similar analysis as E1, this solution can only be stable if a′12 < −1 which corresponds to a

very intense negative influence of population x2 upon population x1.

Stability of E3 The Jacobian matrix (3.14) evaluated at the equilibrium point is

J

∣∣∣∣
~x=E3

=

(
−x∗1 a′12x

∗
1

r′a′21x
∗
2 −r′x∗2

)
, (3.18)

in which E3 = (x∗1 x∗2)T . By substituting the values from equality (3.13), it follows that

J

∣∣∣∣
~x=E3

=
1

1− a′12a
′
21

(
−1− a′12 a′12(1 + a′12)

r′a′21(1 + a′21) −r′(1 + a′21)

)
, (3.19)
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As seen in section 2.1.5, for a two-dimensional system, the classification of fixed point stabilities
can be determined by the Jacobian matrix trace and determinant. For the Jacobian (3.19), these
are

tr J

∣∣∣∣
~x=E3

=
−1

1− a′12a
′
21

(1 + r′ + a′12 + r′a′21) (3.20)

det J

∣∣∣∣
~x=E3

=
r′

1− a′12a
′
21

(1 + a′12)(1 + a′21). (3.21)

The characteristic polynomial of J
∣∣
E3

is PE3
(λ) = det

(
J
∣∣
E3
− λI

)
so that

PE3
(λ) = det

(
−1− a′12 − λ a′12(1 + a′12)
r′a′21(1 + a′21) −r′ − r′a′21 − λ

)
(3.22)

= λ2−1 + r′ + a′12 + r′a′21

1− a′12a
′
21︸ ︷︷ ︸

trJ|
E3

λ+
r′(1 + a′12)(1 + a′21)

1− a′12a
′
21︸ ︷︷ ︸

detJ|
E3

. (3.23)

The coexistence equilibrium point is then stable if tr J
∣∣
E3

< 0 and det J
∣∣
E3

> 0.

3.1.3.4 A Parameter Space Map

In order to thoroughly study the dynamics of the system at each point on the state space, it is
convenient to divide the parameter space into regions with well-defined behavior. The following
curves are selected for their relevance to system properties as indicated:

Line a: a′12 + 1 = 0, determines the stability of E2, is one of the det J
∣∣
~x=E3

factors and numerator
of x1∗;

Line b: a′21 + 1 = 0, determines the stability of E1, is one of the det J
∣∣
~x=E3

factors, and numerator
of x2∗;

Line c: 1 + a′12 + r′(1 + a′21) = 0, numerator of tr J
∣∣
~x=E3

;

Curve d: a′12a
′
21 − 1 = 0, present in the equilibrium point E3 and denominator of det J

∣∣
~x=E3

and
tr J

∣∣
~x=E3

.

Particular cases are the intersection of such curves,

Point A: (−1,−1), A = a ∩ b ∩ c ∩ d;

Point B: (−r,−1/r), B = c ∩ d.

The curves defined above divide the parameter space into up to eleven regions. In the interior
of each of these regions, the determinant and trace of the Jacobian of the system evaluated at the
equilibrium E3 have a well-defined sign, i.e., their sign does not change. Each of these regions is
defined and studied in table 3.1.

The relevant curves, points, and regions limited by them are represented in figure 3.1. The
effect of changing r′ is simply a change on line c’s angular coefficient, with r′ → 0 =⇒ c→ a and
r′ → ∞ =⇒ c → b. Note that by the conditions presented on table 3.1 regions 6 and 7 cannot
both exist for the same value of r′, i.e. region 6 has non-zero area if r′ > 1, while region 7 requires
r′ < 1.

In the following, the behavior of the system at each of the lines and points of interest is
individually studied.

Line a: At this line, a′12 = −1 and thus E3 =
(
(1− 1)

/
(1 + a′21), (1 + a′21)

/
(1 + a′21)

)
= (0, 1) =

E2, i.e. there is a convergence of equilibrium points. The eigenvalues for this equilibrium point
are λ′ = 0 and λ′′ = −r′ < 0. The null eigenvalue corresponds to a central manifold, while the
negative eigenvalue indicates that the flow is stable on the direction associated with λ′′ eigenvalue.
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Figure 3.1: Distinct regions and curves on the two-dimensional generalized Lotka-
Volterra model (gLV-2D) a′12×a′21 parameter space: This diagram displays the curves (bold
lowercase letters), points (uppercase letters), and regions (numbers) associated with the dynamical
behavior of the system (3.7). The determinant and trace of the Jacobian of the referred system do
not change sign in the interior of any of the specified regions. The curves are relations obtained
when equating factors present in the determinant and trace of the Jacobian to zero. The schematic
diagram was constructed for r′ = 0.2. The axes are presented with dotted lines for reference and
are not borders of any region. All elements in the figure are defined in the text.

Line b: In a analogous way to line a, at this line a′21 = −1 and thus E3 = (1, 0) = E1. The
eigenvalues associated with the Jacobian evaluated at this equilibrium point are λ′ = 0 and λ′′ =
−1, indicating the presence of a central manifold and a stable hyperbolic manifold.

Line c: at this line, a′12 + 1 + r′(a′21 + 1) = tr J
∣∣
~x=E3

= 0 and thus the equilibrium point E3 can
only be neutrally stable or a saddle point. With the additional condition that det J

∣∣
~x=E3

> 0, the

equilibrium point goes through a Hopf bifurcation and the eigenvalues become ~λ = (a+ bi, a− bi).
Nevertheless, this bifurcation can only affect the dynamics of the populations if it occurs in a region
of the parameter space for which E3 > ~0 since negative densities are unmeaningful.

Observing that at this line a′12 + 1 = −r′(a′21 + 1), it is possible to calculate the Jacobian’s
determinant evaluated at the coexistence equilibrium point as

det J

∣∣∣∣
~x=E3

=
−r′2(a′21 + 1)

2

(a′21 + 1)(r′a′21 + 1)

=
−r′2(a′21 + 1)

(r′a′21 + 1)
. (3.24)

The determinant is in the region (a′21 + 1)
/

(r′a′21 + 1) < 0, i.e. when the numerator and
denominator have opposite signs. This occurs for the region −1 < a′21 < −1

/
r′ if r′ < 1 or

−1 > a′21 > −1
/
r′ if r′ > 1. In the figure 3.1, this corresponds to the line segment AB. In either

situation, 1− a′12a
′
21 = (1 + a′21)(1 + r′a′21) < 0, and thus
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x∗1 =
1 + a′12

1− a′12a
′
21

= − r′

1 + r′a′21

< 0 if − 1

r′
< a′21

x∗2 =
1 + a′21

1− a′12a
′
21

=
1

(1 + r′a′21)
< 0 if a′21 < −

1

r′
,

and therefore at least one of the components of E3 is negative. This equilibrium point is not inside
an ecologically meaningful region when the conditions for a Hopf bifurcation are satisfied.

Curve d: At curve c, a′12a
′
21 = 1 , the value of E3 as well as the trace and determinant of the

Jacobian evaluated at this point diverge. In order to study the equilibrium of the system in this
curve, it is possible to solve (3.9) with the additional assumption that a′12 = 1

/
a′21 = a. Therefore





x1(1− x1 + ax2) = 0

r′x2

(
1− x2 +

1

a
x1

)
= 0

x1, x2 6= 0 =⇒





1− x1 + ax2 = 0

1− x2 +
1

a
x1 = 0

=⇒




x1 = 1 + ax2

x2 = 1 + 1
a + a

ax2

=⇒ 1

a
= a = −1

=⇒ x1 + x2 = 1.

It is possible to see that there is a line x1 +x2 = 1 at which the flow of the system is stationary.
The Jacobian (3.14), evaluated at this line then becomes

J

∣∣∣∣
x2=1−x1

=

(
−x1 −x1

−r′(1− x1) −r′(1− x1)

)
, (3.25)

and its eigenvalues are λ′ = 0 and λ′′ = −x1 − r′x2 < 0. The eigenvector ~e0 = (a, b)
T associated

with λ′ can be found by solving the eigenvector equation J
∣∣
x2=1−x1

~e0 = λ′~e0, therefore

J

∣∣∣∣
x2=1−x1

~e0 = ~0

(
−x1 −x1

−r′x2 −r′x2

)(
a
b

)
=

(
0
0

)

{
−x1(a+ b) = 0

−r′x2(a+ b) = 0

=⇒ a = −b

=⇒ ~e0 =

(
1
−1

)
.

This vector indicates that the line of neutral stability has an angular coefficient −1, and for
this particular set of parameters, the line x1 +x2 = 1 corresponds to a line of asymptotically stable
equilibria.
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The analysis of the flux behavior on the state space for the particular choice of parameters in
line c lead to the conclusion that the equilibrium E3 = (x∗1, x

∗
2) 6= (0, 0) is only possible under the

additional assumptions that a′12 = a′21 = −1. All the other points in this curve on the parameter
space are associated with a state space flux for which there is no equilibrium point with coexistence.

Point A As indicated in the study of curve d, the point (a′12, a
′
21) = (−1,−1) in the parameter

space is associated with a particular dynamics. In this configuration, interspecific competition
is symmetric and numerically identical to the intraspecific competition, suggesting this could be
the case of two populations that are ecologically similar or the same population being artificially
subdivided in two populations with potentially different basal growth rates. If we assume the
growth rates of the two populations to be equal, i.e. r1 = r2 =⇒ r′ = 1, both equations are
completely equivalent and by taking x = x1 + x2 it follows that

dx

dt
=

dx1

dt
+

dx2

dt
= x1(1− x1 − x2) + x2(1− x1 − x2)

= (x1 + x2)(1− (x1 + x2))

dx

dt
= x(1− x)

Regions 1 - 11 The regions limited by the relevant lines and points highlighted have well defined
dynamical behavior. In order to characterize these dynamics, the stability of all equilibrium points
and the feasibility1of the coexistence solution E3 for each region are presented in table 3.1. These
regions are indicated by the numbers in figure 3.1, which depicts a section of the parameter space
for constant r′.

Indeed, considering the conditions for the local stability of all equilibrium points, it is possible to
investigate which ones are going to be stable at some values of the parameters a′12, a′21 and r′. The
equilibrium points E0, E1 and E2 do not depend on any parameters, and are always in region
R2
≥0 for which the densities are ecologically reasonable. For equilibrium point E3 the densities

depend on the parameters and therefore it is important to determine the sign of populations’
densities at each region. Indeed, the sign of the densities is indicated on table 3.1 under column
sgn(E3)

T .
All stable equilibria for parameters inside a given parameter space region are listed under

column "Stable". Note that the equilibrium point E3 might be associated with negative densities
and thus be in an unreasonable region of the state space. In particular, for regions 2 and 3, the
equilibrium E3 has a negative component.

In order to illustrate the dynamics in each region of the parameter space, it is convenient to
study the state space portraits associated with each set of parameters. Figure 3.2 displays the
state space portrait for every region illustrated in figure 3.1.

In this figure, the lines indicating null net growth for each population are presented. These
lines are named isoclines, and for the model (3.8) it is possible to show that each population has
two isoclines, one of which is the line xi = 0. Under the assumption that xi 6= 0, it is possible to
find the other isoclines as

xi = 1 + a′ijxj i, j ∈ {1, 2}. (3.26)

As also depicted in figure 3.2, there are five distinct possibilities for the state space diagram
in the two-dimensional generalized Lotka-Volterra system. The system might have one stable
equilibrium point with only of the populations persisting at its carrying capacity as in regions 2 -
9 of the parameter space and depicted in subfigures A - D. In this scenario, the system converges
for the state with only one of the populations at its carrying capacity for any initial condition. A
scenario in which the growth of both populations in isolation is stable but their coexistence is not,
corresponding to region 1 of the parameter space, is represented in subfigure E. In this scenario,
the isoclines intercept in an unstable node with positive coordinates for both populations, which

1A solution of an ecologically-motivated dynamical system is said to be feasible if all the densities on this solution
are positive.
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nº Region (trJ,detJ,∆)
∣∣
~x=E3

sgn(E3)
T

E3 Stab. Stable

1 a′12 < −1 and
a′21 < −1

(−,−,+) (+,+) Saddle Point [E1, E2]

2 a′12 < −1 and
−1 < a′21 < min

(
1
a′12
,− 1+r′+a′12

r′

) (−,+,±) (+,−) Stable [E2, E3]

3 a′12 <
min

(
1
/
a′21,−(1 + r′ + r′a′21)

)

and −1 < a′12 and a′21 < −1

(−,+,±) (−,+) Stable [E1, E3]

4 a′12 < −1 and
1
/
a′12 < a′21 < −(1 + r′ + a′12)

/
(r′)

(+,−,+) (−,+) Saddle Point [E2]

5 1
/
a′21 < a′12 < −(1 + r′ + r′a′21)

and a′21 < −1
(+,−,+) (+,−) Saddle Point [E1]

6 a′12 < −1 and
−(1 + r′ + a′12)

/
(r′) < a′21 < 1

/
a′12

(+,+,±) (+,−) Unstable [E2]

7 −(1 + r′ + r′a′21) < a′12 < 1
/
a′21

and a′21 < −1
(+,+,±) (−,+) Unstable [E1]

8 a′12 < −1 and
max

(
1
/
a′12,−(1 + r′ + a′12)

/
(r′)
)
<

a′21

(−,−,+) (−,+) Saddle Point [E2]

9 max
(
1
/
a′21,−(1 + r′ + r′a′21)

)
<

a′12

and a′21 < −1

(−,−,+) (+,−) Saddle Point [E1]

10 −1 < a′12 and
−1 < a′21 < 1

/
a′12

(−,+,±) (+,+) Stable [E3]

11 0 < a′12 and
1
/
a′12 < a′21

(+,−,+) (−,−) Saddle Point [∅]

Table 3.1: Dynamical behavior at parameter space regions: The behavior
of each region highlighted on diagram 3.1 is presented and studied. Each region
is defined by a set of inequalities on a′12 and a′21, and the trace, determinant and
discriminant ∆ = (trJ)

2 − 4 det(J) of the Jacobian evaluated at the coexistence
equilibrium are presented. This equilibrium point’s feasibility is presented using the
sign (sgn(E3)

T ) of its components, and the stability is classified. The stability of E3

is presented in the column E3Stab.. As presented in the text, solution E0 is always
an unstable node and solutions E1, E2 are always nodes for which the stability is
indicated at the last column of the table.

lie on the limiting border between the basins of attraction of the two stable equilibria. It is also
possible that the coexistence of both populations is stable so that all trajectories passing through
a point with non-zero densities for both populations converges to the coexistence equilibrium point
as seen in subfigure F. Subfigure H corresponds to the particular case in which a′12 = a′21 = −1
and displays a line of asymptotically stable equilibria.

In subfigure G, the populations display a tendency to grow indefinitely. This is a consequence
of the fact that mutual influences between populations are positive a′12, a

′
21 > 0 and that isoclines

do not intercept each other at the ecologically meaningful subspace R2
+. Consider that the two

isoclines are defined by equation (3.26) so that

{
l′ : x1 = a′12x2 + 1

l′′ : x2 = a′21x1 + 1

=⇒
{
l′ : x1 = a′12x2 + 1

l′′ : x1 = x2

/
a′21 − 1

/
a′21

.

Therefore, as a′12, a
′
21 > 0 the condition for existence of an unbounded growth region is that

the angular coefficient of line l′ is larger or equal to the angular coefficient of line l′′, i.e.,
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a′12 ≥
1

a′21

=⇒ a′12a
′
21 ≥ 1,

which is precisely the union of the conditions defining the region 11 and its border, the positive
portion of curve d.

3.1.3.5 Ecological Interpretation

The dynamical properties of the generalized two-dimensional Lotka-Volterra model presented thus
far are intrinsically related to the types of ecological interaction in the system. It is then possible
to provide an ecological interpretation of the dynamical results. Indeed, figure 3.3 illustrates
this interplay by presenting the ecological regions corresponding to cooperative, exploitative, and
competitive interactions in a green, yellow, and red overlay. In the same figure, the regions of
distinct dynamical behaviors are also indicated, i.e., stable coexistence, competitive exclusion, bi-
stability, and unlimited (infinite) growth by a dotted, stripped, checkboard, and wavy overlay,
respectively.

There is never the extinction of any population for cooperative dynamics, but the model pre-
dicts unlimited growth for intense cooperation between both populations (region 11 in figure 3.1).
The unlimited growth is unreasonable from an ecological standpoint and is a consequence of the
modeling procedure as it signals that interactions between populations suppressed the intraspe-
cific competition. This type of dynamics occurs for systems in which the per capita growth benefit
steaming from cooperation has no upper bound and depends linearly on the cooperative population
density. As some authors have pointed out, this unlimited growth can be avoided by incorporating
saturation on cooperation benefits (Qian and Akçay 2020).

The generalized Lotka-Volterra model also indicates that strong exploitative interactions might
drive the exploited population to extinction. The extinction of the exploited population occurs
whenever the exploitation interaction can reduce the net per capita growth rate of the exploited
population to zero when the exploiting population is at its carrying capacity, i.e., a′ij < −1 for
exploited population i and exploiting population j. The conditions for the extinction of one of the
populations interacting through exploitation are satisfied in the intersection of regions 4, 5, 8 and
9 in figure 3.1 in the second and fourth quadrants of the a′ij × a′ji plane.

Suppose the interaction is not as intense, so that a′ij > −1. In that case, the exploited popula-
tion has a positive net per capita growth rate if its density is small, and the exploiting population
is at its carrying capacity. In other words, the exploited population can invade a system with
population j at its carrying capacity. As this is symmetrical for both populations, the condition
for coexistence is that both populations are able to invade a system in which just the other popu-
lation is at its carrying capacity, a′12 > −1 and a′21 > −1 (intersection of the second and fourth
quadrants and region 10 in figure 3.1).

For two competing populations with intense competitive interaction a′12 < −1 and a′21 < −1,
there is mutual competitive exclusion. Under these circumstances, no population can invade a
system in which the other is at its carrying capacity. The final state of the community will then be
dependent on the initial densities of both populations. The mutual competitive exclusion scenario
corresponds to region 1 in figure 3.1.

If one population i is a strong competitor as indicated by an intense negative influence upon the
competing population j, aji < −1 but the other population does not exert such strong competitive
regulation, the situation is analogous to the intense exploitation scenario. The strong competitor
will be dominant and drive the weak competitor to extinction in all scenarios for which both
populations are initially present. This scenario corresponds to the intersection of regions 2 to 9
with the third quadrant of the a′ij × a′ji plane, i.e., with a′ij < 0 and a′ji < 0.

Nevertheless, both competing populations can also coexist if the interaction is relatively weak.
Specifically, both populations should be able to invade a system in which the other is at the carrying
capacity (a′ij > −1 and a′ji > −1). This condition is satisfied in the portion of region 10 that
lies in the third quadrant. In general, many outcomes are possible in a competitive scenario,
and the particular result depends on the intensities of the interspecific interactions between both
populations.
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Note that the definition of the gLV model (3.7) is best suited for positive intrinsic growth
rates, ~r > ~0. The model still holds for negative growth rates, but it looses much of the ecological
interpretability in such scenario, as the meaning of interaction variables aij would depend on ri:
For positive intrinsic growth rates, aij is the inverse of j’s density necessary to change i’s intrinsic
growth rate by 100% positively or negatively in accordance to aij sign; For negative growth rates
the sign is changed and thus if ri < 0 a positive value of aij is associated with a decrease in i’s
population and a negative value of aij is beneficial to i’s population. This mismatch in the meaning
of different interaction coefficients hinders interpretation and parametrization of this model for
mixed positive and negative growth rates.

The specific growth rates of the populations are not determinant for the overall dynamics of
the system. For instance, consider the situation in which one population has an intrinsic growth
much larger than the other. Under this assumption, two limiting cases are possible. Considering
r1 >> r2 =⇒ r′ → 0, the line c, defined as a′12 + 1 + r′(a′21 + 1) = 0 coincides with line a, and the
parameter space regions 3, 5, 6 and 8 cease to exist. Conversely, if r1 << r2 =⇒ r′ → +∞, than
line c coincides with line b, as lim

r′→∞
((a′12 + 1)

/
r′+ a′21 + 1) = a′21 + 1 and under these assumption

parameter space regions 2, 4, 7 and 9 cease to exist. Despite these changes, regions 2, 4, 6, and 8
share the same properties of the state space portrait, and the same occurs in regions 3, 5, 7, and
9 as it can be seen on table 3.1. Therefore even in these limiting cases, the intrinsic growth rates
do not have a sizeable structural impact.

Nevertheless, it is relevant to state that this is also a consequence of model parameterization
and the assumption that coefficients a′ij indicate the proportion of change on the intrinsic growth
rate of population i due to the presence of populations j when it is at its carrying capacity.
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Figure 3.2: State space portrait for all regions of the two dimensional gLV parameter
space: A typical state space portrait for all regions of the gLV-2D defined in table 3.1 and
pictured in diagram 3.1 is shown, with the equilibrium points indicated by white and dark dots
for unstable and stable solutions, respectively. Oriented grey curves correspond to subsets of
possible trajectories of the system for different initial conditions. The bold lines are isoclines,
curves indicating a region in which one of the populations has null net growth. In each plot,
isoclines xi = 0 were omitted, and it is possible to identify which isocline corresponds to each
population by observing to which fixed-point it is connected. A, B, C, D display a state space
typical of competitive exclusion, population x1 is the better competitor in diagrams A and B
while population x2 drive its competitor to extinction in diagrams C and D. E indicates a bi-
stable situation, in which both populations can exclude the other competitively, depending on the
initial densities of both populations. F indicates a coexistence scenario in which both populations
stabilize at a feasible equilibrium. G exemplifies a region of the parameter space for which no
equilibrium point is stable, and there is an infinite growth of both populations. H represents
the state space for the particular choice of parameters corresponding to point A of the parameter
space, and a bold line indicates both isoclines and the set of equilibrium points for which x1 +x2 =
1. Interaction parameters (a′12, a

′
21) for each subgraph were: A (−0.7,−1.2), B (−1.2,−0.7), C

(−0.7,−1.6), D (−1.6,−0.7), E (−2.2,−1.8), F (0.25, 0.2),G (1.2, 1.2) andH (−1,−1). All graphs
were constructed with a relative growth rate r′ = 0.8.
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Figure 3.3: Ecological interpretation of two-dimensional generalized Lotka-Volterra
model parameter space: The ecological regions corresponding to cooperative, exploitative and
competitive interactions are respectively shown in green, yellow, and red. The parameter space
regions corresponding to stable coexistence, competitive exclusion, bi-stability, and unlimited (in-
finite) growth are respectively indicated by a dotted, stripped, check-board, and wavy overlay. In
each of these regions, an inset with a corresponding portrait of the state space is shown. The state
space portraits were taken from figure 3.2. Note that different overlays can exist for the same
background color, indicating that the same ecological interaction might correspond to distinct
topological properties of the state space and vice-versa.
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3.1.4 Ecological Community with N Interacting Populations

Despite the completeness possible in studies with one and two interacting populations, real eco-
logical communities are seldom straightforward. The richness of many ecosystems implies that
the modeling of ecological communities is a high dimensional endeavor, thus requiring caution in
generalizing results and principles derived from models with low dimensionality. Indeed, it is well
known that dynamical systems with many variables can display chaos and other types of dynamics
that are not possible in two dimensions (Fiedler-Ferrara and Prado 1994).

Due to the intrinsic complexity of studying dynamical systems in many dimensions, no attempt
is made to present a complete picture of the parameter space of the generalized Lotka-Volterra
model (Takeuchi 1996). In the following, some essential properties are shown, such as forward
invariance, the existence of equilibrium points and their local and global stability, the possible
asymptotic dynamics in the model, and conditions for boundedness of the solutions. Additionally,
the time average of population densities in a solution of the model is shown to be equal to the
densities of the equilibrium point, even if this solution is not stable.

For many dimensions, it is often convenient to make use of a vectorial formulation of the model
(3.1) as:

d ~X

dt
= diag( ~X ◦ ~r)

(
~1 + A ~X

)
(3.27)

in which
(
~A ◦ ~B

)
i

= AiBi is the Hadamard product, i.e. indicate multiplication of the elements
with same index.

3.1.4.1 Forward Invariance

The generalized Lotka-Volterra model, as defined by the system of equations (3.1), assumes non-
negative values for the Xi variables. It is then worth to show that no trajectory starting in the
ecologically meaningful region RN≥0 entails points in non-meaningful region RN \ RN≥0 and vice
versa. In fact, this is guaranteed if no trajectory can ever cross the boundaries between regions,
i.e. if and only if dXi

dt

∣∣
Xi=0

= 0 ∀i. Therefore

dXi

dt

∣∣∣∣
Xi=0

= 0 (3.28)

=⇒ 0 · ri
(

1 + A ~X
)

= 0 ∀i
0 = 0 �

Thus, the forward invariance of the gLV model for N dimensions is guaranteed.

3.1.4.2 Equilibrium Points

As indicated in subsection 3.1.4.1, ~X = ~0 is always a equilibrium point. Under the assumptions
Xi 6= 0 ∀i and ri 6= 0 ∀i it is possible to calculate the equilibrium points, denoted by ~X∗, for
model (3.27) as

diag
(
~X∗
)
diag (~r)

(
~1 + A ~X∗

)
= ~0

=⇒ ~1 + A ~X∗ = ~0

A ~X∗ = −~1
~X∗ = −A−1~1. (3.29)

Therefore, this solution is possible if the interaction matrixA is non-singular and if −A−1~1 > ~0,
the equilibrium point is said to be feasible. In general, in terms of the index-based formulation of
the model (3.1), there are two possible solutions for the equation dXi

dt = 0 for a given population i
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dXi

dt
= 0 =⇒

{
X∗i = 0 or∑
j aijX

∗
j = −1

. (3.30)

Consider that for a given equilibrium point Xi > 0 for i ∈ {1, · · · , l} and Xj = 0 for j ∈
{l + 1, · · · , n}. Under these assumptions, it is possible to construct a reduced interaction matrix

(A′)ij = aij i, j ∈ {1, · · · , l} (3.31)

and denoting (X1, · · · , Xl)
T

= ~X ′ it follows that

~X ′
∗

= −A′−1~1. (3.32)

Therefore, all the equilibrium points of the N dimensional gLV model can be found by inverting
a reduced matrix obtained from A removing the columns and rows correspondent to variables that
are zero in such equilibrium point. Since each of the N variables can have a zero and a non-
zero solution for every combination of all other variables, the model displays at most 2N distinct
solutions. It is expected that some of them have at least one variable X∗j < 0 and thus not all the
solutions are in the ecologically relevant subspace RN≥0.

3.1.4.3 Linear Approximation of the Flow - Jacobian Matrix

In order to investigate the stability of equilibrium points of system (3.27) for N populations, it
is necessary to perform the linearization of the system around this equilibrium. As indicated in
equation (2.6), it is possible to find a set of linear differential equations

d

dt
~X ′ = J ~X ′, (3.33)

which are locally equivalent to the general nonlinear system. For the generalized Lotka-Volterra
model (3.1), the Jacobian matrix can be calculated as

Jij =
∂

∂Xj

dXi

dt

=⇒ Jij =

{
ri

(
1 + aiiXi +

∑
j aijXj

)
i = j

riaijXi i 6= j
. (3.34)

If the Jacobian matrix is being evaluated at the neighborhood of the internal equilibrium (3.29),
it follows that

∑
j aijX

∗
j + 1 = 0, thus the Jacobian for this equilibrium point can be defined as

Jij

∣∣∣∣
~X∗

= riaijX
∗
i ∀i, j. (3.35)

Instead, if the Jacobian is being evaluated at the equilibrium point (3.32), with some popula-
tions virtually extinct, it follows that

Jij

∣∣∣∣
~X′
∗

=

(
J′ K

0 diag
(
ri

(∑
j aijX

∗
j + 1

))
)
, (3.36)

in which J′ is the l × l matrix (J′)ij =
∂

∂Xj
Xi i, j ∈ {1, . . . , l}, K is the l × (N − l) matrix

(K)ij = aijXi i ∈ {1, . . . , l} and j ∈ {l + 1, . . . , N}.
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3.1.4.4 Local Stability of the equilibrium points

As presented in section 2.1.5.1, the local stability of a equilibrium point can be studied by means
of the linearized system (3.33). The condition for the local stability of a given equilibrium point is
that all eigenvalues of the Jacobian matrix evaluated at this equilibrium point should have negative
real parts. For the internal equilibrium point (3.29), it is thus necessary to find the eigenvalues of
the matrix

M = J

∣∣∣∣
~X= ~X∗

= diag
(
~r ◦ ~X∗

)
A, (3.37)

in which M is the community matrix, the coefficients mij of which indicate the net effect of the
interaction between populations i and j upon the growth rate of population i near the equilibrium
point. The distribution of eigenvalues is then dependent on ~X∗, as seen in Gibbs et al. (2018).

For solutions with some subset of the populations extinct (3.32), the linearized system gets
decoupled for a subset of the populations, and their eigenvalues can then be calculated directly.
Indeed, considering the eigenvalues of matrix M′ = Jij

∣∣
~X′
∗ yields

det (M′ − λI) = det

(
J′ − λIl K

0 diag
(
ri

[∑
j aijX

∗
j + 1

]
− λ
)
)
,

and since the determinant of a block upper triangular matrix can be calculated as the product of
the determinants of its diagonal blocks, it follows that

det (M′ − λI) = det(J′ − λIl) det


diag


ri


∑

j

aijX
∗
j + 1


− λ






det (M′ − λI) = det(J′ − λIl)
N∏

i=l+1


ri


∑

j

aijX
∗
j + 1


− λ


. (3.38)

Therefore, a necessary condition for local stability of the equilibrium for populationsXl+1, . . . , XN

are extinct is

∑

j

aijX
∗
j + 1 < 0 ∀i ∈ {l + 1, . . . , N}. (3.39)

The set of conditions (3.39) indicates that the extinct populations cannot invade the commu-
nity. In other words, if any of the populations that have zero density in the equilibrium point is
reintroduced into the community at a low density, the per capita growth rate of such population
will be negative. Also, the coexistence of all populations with positive densities in this equilibrium
point must be stable since all eigenvalues of J′ are also eigenvalues of M′.

3.1.4.5 Global Stability of Equilibrium Points

In opposition to local stability, the global stability of a dynamical system ensures that all trajecto-
ries that do not start in some (unstable) equilibrium point will converge to a given (globally stable)
equilibrium point. In other words, the basin of attraction of the globally stable equilibrium point
is the entire state space, except for other equilibrium points. The techniques used to prove global
stability for a given solution involve the construction of a Lyapunov function V ( ~X), V : RN≥0 → R
which has the properties.





V
(
~X
)
≥ 0 ∀ ~X ∈ RN≥0

V
(
~X
)

= 0 ⇐⇒ ~X = ~X∗

dV ( ~X′)
dt =

(∑
i

∂V ( ~X)
∂Xi

dXi

dt

)∣∣∣∣
~X= ~X′

≤ 0 ∀ ~X ′ ∈ RN≥0

dV ( ~X′)
dt = 0 ⇐⇒ ~X ′ = ~X∗.

(3.40)
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In order to construct a Lyapunov function for the generalized Lotka-Volterra model, it will be
necessary to define some matrix properties.

• Negative Definite Matrix: A matrix B is said to be negative definite if and only if
~XTB ~X < 0 ∀ ~X 6= ~0. In addition, if B is also symmetric such that B = BT , then all of its
eigenvalues are real and negative.

• Volterra-Lyapunov Stability: A matrix B is said to be Volterra-Lypaunov stable, Lya-
punov diagonally stable or VL-stable, if there exists a positive diagonal matrix D > 0 such
that the symmetric matrix DB + BTD is negative definite.

• P -matrix: A matrix B is said to be a P -matrix if, and only if, all the principal minors of B
are positive.

More explicitly, if B is VL-stable, then

~XT
(
DB + BTD

)
~X < 0, (3.41)

and since
(
DB + BTD

)T
= (DB)

T
+
(
BTD

)T
= BTD + DB = DB + BTD, i.e. the matrix

DB + BTD is symmetric, then all its eigenvalues are negative.
Murty (1972) has shown that if a matrix ~B is a P -matrix, there is an unique solution for the

linear complementarity problem





~y = B~x+ ~c ≥ ~0
~x ≥ ~0
yixi = 0

,

in which B is a N × N real matrix and ~x, ~y ∈ RN≥0. However, by allowing B = −A and ~c = ~1,
this linear complementarity problem is equivalent to finding a equilibrium point for the generalized
Lotka-Volterra model (Takeuchi 1996), with the additional assumption that

1 +

N∑

j=1

aijX
∗
j ≤ 0 i = 1, . . . , N. (3.42)

Thus, if it is possible to show that −A is a P -matrix, then the underlying system is guaranteed
to have a unique solution in RN≥0. Indeed, (Cross 1978) proved that if a matrix B is VL-stable than
−B is a P -matrix, and therefore the associated gLV model has a unique solution. This solution
does not need to be internal, i.e. there might be some populations Xi for which X∗i = 0, but
if that is the case it is always possible to consider the subsystem for which X∗i > 0 ∀i and thus
it is guaranteed that some subsystem has a internal equilibrium if the interaction matrix A is
VL-stable.

However, suppose that system (3.27) has a non-negative equilibrium ~X∗ = (X∗1 , . . . , Xl, 0, . . . , 0)
T .

It is then possible to construct a Lyapunov function to evaluate the global stability of this equi-
librium. Following (Goh 1977; Takeuchi 1996), it is possible to write

V ( ~X) =

S1︷ ︸︸ ︷
l∑

i=1

di

(
Xi −X∗i −X∗i log

(
Xi

X∗i

))
+

S2︷ ︸︸ ︷
N∑

i=l+1

diXi, (3.43)

in which ~d ∈ RN > ~0 is yet unspecified.
In order to show that the putative Lyapunov function satisfies the conditions (3.40), let us first

define the family of functions fx∗ , parametrized by x∗ ∈ R>0 :

fx∗ : R>0 → R
x 7→ x− x∗ − x∗ ln

(
x
/
x∗
)
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The derivative of this function can be calculated as

f ′x∗(x) =
dfx∗(x)

dx
= 1− x∗

x
=⇒ f ′x∗(x

∗) = 0

=⇒ f ′′x∗(x)

∣∣∣∣
x=x∗

=
x∗

x2

∣∣∣∣
x=x∗

=
1

x∗
> 0.

From the development above, it is possible to see that fx∗(x) has a unique global minimum at
x = x∗. Since S1 =

∑l
i=1 difX∗i (Xi), it follows that S1 has a global minimum at Xi = X∗i , i =

1, . . . , l. Additionally since Xi ≥ 0 , the global minimum for S2 is Xi = 0, i = l + 1, . . . , N .
Therefore minV

(
~X
)

= V
(
~X∗
)

= 0.

d

dt
V
(
~X
)

=

N∑

i=1

∂V (X)

∂Xi

dXi

dt

=

l∑

i=1

di

(
1− X∗i

Xi

)
dXi

dt
+

N∑

i=l+1

di
dXi

dt

=

l∑

i=1

di (Xi −X∗i )
1

Xi

dXi

dt
+

N∑

i=l+1

di
dXi

dt

=

l∑

i=1

di (Xi −X∗i ) ri


1 +

N∑

j=1

aijXj


+

N∑

i=l+1

diriXi


1 +

N∑

j=1

aijXj




But
N∑

j=1

aijX
∗
j = −1 for i = 1, . . . , l. Conversely, for i = l + 1, . . . , N it holds that X∗i = 0, so

it the followings relations always hold

N∑

j=1

aijXj =

N∑

j=1

aijXj −
N∑

j=1

aijX
∗
j +

N∑

j=1

aijX
∗
j

=

N∑

j=1

aij
(
Xj −X∗j

)
+

N∑

j=1

aijX
∗
j

1 +

N∑

j=1

aijXj =





N∑

j=1

aij
(
Xj −X∗j

)
i = 1, . . . , l

N∑

j=1

aij
(
Xj −X∗j

)
+


1 +

N∑

j=1

aijX
∗
j


 i = l + 1, . . . , N

.

Therefore,
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d

dt
V
(
~X
)

=

l∑

i=1

(Xi −X∗i )

N∑

j=1

diriaij
(
Xj −X∗j

)
+

N∑

i=l+1

(Xi −X∗i )

N∑

j=1

diriaij
(
Xj −X∗j

)
+

+

N∑

i=l+1

diriXi


1 +

N∑

j=1

aijX
∗
j




=

N∑

i=1

N∑

j=1

(Xi −X∗i ) diriaij
(
Xj −X∗j

)
+

N∑

i=l+1

diriXi


1 +

N∑

j=1

aijX
∗
j




∴
d

dt
V
(
~X
)

= (1/2)( ~X − ~X∗)T
(
CA + ATC

)
( ~X − ~X∗) +

N∑

i=l+1

diriXi


1 +

N∑

j=1

aijX
∗
j


 (3.44)

in which C = diag (diri). Since A is VL-stable hypothesis, the matrix
(
CA + ATC

)
is negative

definite and thus the first term of the equation is negative in the domain of V ( ~X). The second
term in the equation (3.44) is always negative due to the requirement for the existence of a unique
equilibrium (3.42). Therefore it is possible to conclude that, if it exists, this unique equilibrium is
globally stable for a Lotka-Volterra system with VL-stable interaction matrix.

A significant result is that all principal submatrices of a VL-stable matrix are also VL-stable. A
possible ecological interpretation of this fact is that if the equilibrium of populations in a community
is globally stable, all possible assemblies of the same populations will also display globally stable
equilibria (Cross 1978).

3.1.4.6 Unbounded, Cyclic and Chaotic Dynamics

In order to characterize the solutions of system (3.27), it is necessary to define what types of asymp-
totic dynamics can be expected. As asymptotic dynamics, we refer to the topological properties of
the solution of the system after an arbitrary initial temporal evolution, in which the system might
display some undefined dynamics. This initial temporal evolution is referred to as transient.

It is known that generalized Lotka-Volterra systems might display any dynamics (Smale 1976).
In what follows, an attempt is made to identify or present conditions for particular dynamics from
the parameters of the model (3.27).

3.1.4.7 Unbounded Dynamics

For the applicability of the gLV model to real problems, it is relevant to investigate if the model may
predict unreasonable dynamics for some parameters. Indeed, a very unreasonable scenario when
considering N interacting populations is that some subset with M populations grow in density
indefinitely. In order to investigate the existence of such scenario, consider the interaction matrix
A and suppose it has an eigenvector ~c ≥ ~0 such that A~c = λ~c, λ > 0. If we suppose the vector of
populations densities is linear dependent on the eigenvector ~c such that ~X = k~c, k ≥ 0, it follows
that:

d ~X

dt

∣∣∣∣∣
~X=k~c

= diag (k~c ◦ ~r)
(
~1 + kA~c

)

∴
d ~X

dt

∣∣∣∣∣
~X=k~c

= k diag (~c ◦ ~r)
(
~1 + kλ~c

)
≥ 0, (3.45)

If the interaction matrix satisfies the previously stated conditions, there is always a line in RN≥0

for which the growth of all populations is always positive (or null). However, it is not guaranteed
that the temporal evolution will drive all the populations to infinite growth for a given initial
condition on this line, as the flow might not be parallel to such a line at all points.

The results for the boundedness of gLV systems are developed following Hofbauer and Sigmund
(1998). A matrix A is said to be a B-matrix if solutions of the associated Lotka-Volterra model
(3.1) are bounded:
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Definition 3.1. Let A be an n × n interaction matrix with real entries aij ∈ R. A is said
to be a B-matrix if solutions of the associated Lotka-Volterra model (3.1), Xi(t), are such that
∃M > 0 such that Xi(t) < M for t→∞ ∀i.

Theorem 3.1. [adapted from (Hofbauer and Sigmund 1998)] Suppose that ~X ≥ ~0 with ~X 6= ~0

and ~X ∈ Rn, if there is an i such that Xi > 0 and
(
A ~X

)
i
< 0 for any vector ~X satisfying the

condition above, then the matrix A is a B-matrix.

Many of the properties equivalent to A being a B-matrix were not presented, for an extensive
list see Hofbauer and Sigmund (1998). It is possible to provide an ecological interpretation for the
theorem 3.1 by noting that a given community is guaranteed to have bounded dynamics if, for
any combinations of populations densities in a community, at least one of the populations with
non-zero density has its growth rate decreased due to the effect of community interactions, i.e., at
least one population should have a growth rate lower than it would have if it were isolated and
at low densities.2In this condition, intraspecific competition is also included. Note that it is not
required that the density of at least one population to be decreasing, since the condition would
always be violated by considering a very small ~X.

Indeed, the theorem requires that for all combinations of populations densities, there must be
at least one population for which the community interaction effect is negative, provided ~X 6= ~0. It
is, therefore, possible to investigate conditions that individual and pairs of interacting populations
must satisfy so to guarantee bouded dynamics.

For isolated populations, consider the circumstance in which just one of the populations has
non-zero density, for instance X ′i = 0 ∀i 6= j and X ′i = 1 i = j. The requirement for boundedness
then states

(
A ~X ′

)
i
< 0

=⇒ ajj < 0, (3.46)

which is the natural requirement that the intraspecific competition should have a negative influence
on population growth.

For two interacting populations, say Xj = xj and Xk = xk, it follows that





(
A ~X ′

)
j
< 0

(
A ~X ′

)
k
< 0

(3.47)

=⇒
{
ajjxj + ajkxk < 0

akjxj + akkxk < 0

Suppose that ajk > 0 and akk, ajj < 0. It thus follows that

=⇒
{
xk < −(ajjxj)

/
(ajk)

xk > −(akjxj)
/

(akk)

=⇒ ajjxj
ajk

<
akjxj
akk

(3.48)

∴ akkajj − ajkakj > 0 (3.49)

Conversely, for ajk ≤ 0 the first inequality is always satisfied:

=⇒ ajjxj + ajkxk < 0 ∀(xj , xk) ∈ R2
>0.

From the symmetry of conditions (3.47), the same considerations drawn for ajk hold for akj .
Observing that inequality (3.49) also holds for ajk ≤ 0 or akj ≤ 0, the condition for a system of two
populations growing in accordance to the generalized Lotka-Volterra model (3.1) to be bounded is

2There is no free dinner.
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the inequality (3.47). Therefore, each pair j and k must have mutual interaction coefficients that
satisfy this inequality for a community with many populations.

In general, considering a bounded N -populations community, the inequality
∑
j aij < 0 is true

for at least one of the populations. To see that this is the case, consider the vector of population
densities ~X = ~1, the result is then a direct consequence of the theorem 3.1.

To verify the condition that anN -dimensional system is bounded, the theorem is not convenient,
as it requires testing an inequality for all points in RN≥0. The following theorem presented by
Hofbauer and Sigmund allows for algorithmic verification of the boundedness of the system.

Theorem 3.2 ((Hofbauer and Sigmund 1998)). If all proper principal submatrices of A are B-
matrices and det(−A) > 0 then A itself is a B-matrix.

Note that the theorem is recursive: Starting from a given N × N matrix A, we first check if
the 1× 1 principal submatrices are B-matrices. Based on the development of the boundedness of
an isolated population, this is equivalent to

aii < 0 i = 1, . . . , N (3.50)

If this is the case, then we proceed to verify the determinants of 2 × 2 principal submatrices
of A. If A′2 is a 2 × 2 principal submatrix of A and the condition (3.50) is satisfied for A, then
if detA′2 < 0, A′2 is also a B-matrix. The condition detA′2 < 0 is precisely (3.47). The process
then continues up to N − 1, testing all the determinants of the principal submatrices with order
3, . . . , N −1 so that if det−A′n < 0 n = 3, . . . , N −1 for all the submatrices, then A is a B-matrix
and the system is bounded. An additional advantage of an algorithmic approach is to be able to
conclude that A is not a B-matrix at any intermediate step and thus conclude that the gLV system
described by A is not guaranteed to be bounded.

The algorithm 1 indicates a possible way to iteratively verify if a matrix A is indeed a B-matrix.

Algorithm 1 An algorithm for testing if some matrix is a B-matrix
1: function isBmatrix(N,A) . Inputs are matrix A and its order N
2: n← 1
3: while n ≤ N do
4: for all C, n× n principal submatrix of A do
5: if det(−C) < 0 then
6: return False . A is not a B-matrix
7: end if
8: end for
9: if n = N then

10: return True . A is a B-matrix
11: else
12: n← n+ 1
13: end if
14: end while
15: end function

3.1.4.8 Limit Cycles

Limit cycles are known to happen in systems similar to generalized Lotka-Volterra systems since
1972 (May 1972a). In a limit cycle, the system solution is periodic in the sense that ~X(t) =
~X(t+ T ), additionally, if such cycle is stable neighbouring trajectories on the state space tend to
converge to or diverge from it.

Limit cycles are possible in the generalized Lotka-Volterra model (3.1) for three or more inter-
acting populations (Takeuchi 1996). For instance, consider the particular case of three competing
populations, such that population A outcompetes B, B outcompetes C, and C outcompetes A
in an ecological analog of the classical rock-paper-scissors game. The analysis presented here is
developed based on the results presented by May and Leonard (1975). Let α be the coefficient
related to the competitive regulation of the best competitor over the weaker competitor and β be
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the regulation of the weaker competitor over the stronger one. This non-transitive system can be
parametrized as

d ~X

dt
= diag

(
~X ◦ ~r

)(
~1−A ~X

)
(3.51)

A =




1 α β
β 1 α
α β 1


,

with ~r = ~1, 0 < β < 1 < α and α + β > 2. Remarkably, any two species from these three
competitors satisfy the conditions for a competitive exclusion scenario presented in section 3.1.3.5.

The equilibrium points for the system can be calculated by solving the algebraic system of
equations d ~X

dt = 0, which yields

~X∗0 = (0, 0, 0)
T

~X∗1 = (1, 0, 0)
T

~X∗2 = (0, 1, 0)
T

~X∗3 = (0, 0, 1)
T
.

Additionally, there are three solutions in which two populations coexist that can be found as

{
x< + αx> = 1

βx< + x> = 1

=⇒ (x<, x>) =
1

1− αβ (1− α, 1− β),

in which we denote the better competitor by x> and the worst competitor by x<. However, since
α > 1, these solutions lie outside of the region R3

≥0 and thus are not relevant for further analysis.
The interior solution is ~x∗ = A−1~1 which can be evaluated using the cofactor matrix A as

A−1 =
1

det(A)
A
T

A−1 =
−1

1 + α3 + β3 − 3αβ




1− αβ α2 − β β2 − α
β2 − α 1− αβ α2 − β
α2 − β β2 − α 1− αβ




=⇒ −A−1~1 =
1

1 + α3 + β3 − 3αβ




1 + α2 + β2 − αβ − β − α
1 + α2 + β2 − αβ − β − α
1 + α2 + β2 − αβ − β − α


.

Thus the flow is stationary if all populations have the densities given by

X∗4i =
1 + α2 + β2 − αβ − β − α

1 + α3 + β3 − 3αβ

=

(
1 + α+ β

1 + α+ β

)(
1 + α2 + β2 − αβ − β − α

1 + α3 + β3 − 3αβ

)

=
1

1 + α+ β

(
1 + α3 + β3 − 3αβ

1 + α3 + β3 − 3αβ

)

∴ X∗4i =
1

1 + α+ β
∀i .

In order to study the stability of these equilibrium points, we proceed with the calculation
of the eigenvalues associated with each of them. For X∗0 , all the eigenvalues equal and can be
calculated as
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λ0 = 1− 1× 0− α× 0− β × 0 = 1,

and this solution is a source.
By symmetry, the distribution of eigenvalues associated with the solutions ~X∗1 , . . . ,

~X∗3 is the
same. Calculating the eigenvalues of vecX∗1 , yields

λ1 = 1− 1× 1− α× 0− β × 0 = 0

λ2 = 1− 1× 0− α× 0− β × 1 = 1− β
λ3 = 1− 1× 0− α× 1− β × 0 = 1− α,

which indicates that all the points with the prevalence of just one population are saddles, since
β < 1.

In order to evaluate the stability of the internal equilibrium point, it is possible to evaluate the
Jacobian matrix J of the system (3.51), by means of (3.34) as

J =
−A

1 + α+ β
. (3.52)

The characteristic polynomial associated with the Jacobian matrix is

P (λ) = det(J− λI)

= λ3 +
3

1 + α+ β
λ2 +

3(1− αβ)

(1 + α+ β)
2λ+

1 + α3 + β3 − 3αβ

(1 + α+ β)
3 . (3.53)

In order to find all the roots of the characteristic polynomial, we first note that λ1 = −1 is a
solution:

P (−1) = − (1 + α+ β)
3

(1 + α+ β)
3 +

3(1 + α+ β)
2

(1 + α+ β)
3 −

3(1− αβ)(1 + α+ β)

(1 + α+ β)
3 +

1 + α3 + β3 − 3αβ

(1 + α+ β)
3

=
1

(1 + α+ β)
3

(
−α3 − 3α2β − 3α2 − 3αβ2 − 6αβ − 3α− β3 − 3β2 − 3β − 1+

+ 3α2 + 6αβ + 6α+ 3β2 + 6β + 3+

+ 3α2β + 3αβ2 + 3αβ − 3α− 3β − 3+

α3 − 3αβ + β3 + 1 )

= 0.

Rewriting the charateristic polynomial as P (λ) = p(λ)(λ+ 1) it follows that

p(λ) = λ2 +

b︷ ︸︸ ︷
2− α− β
1 + α+ β

λ+

c︷ ︸︸ ︷
(α− β)

2
+ (α− 1)(β − 1)

(1 + α+ β)
2 ,

and the other eigenvalues are roots of this expression roots, so that
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∆ = b2 − 4c

=
1

(1 + α+ β)
2

(
α2 + 2αβ + β2 − 4α− 4β + 4− 4

(
α2 − αβ + β2 − α− β + 1

))

= −3
α2 − 2αβ + β2

(1 + α+ β)
2

= −3
(α− β)

2

(1 + α+ β)
2

=⇒ λ2 =
−b+

√
∆

2
=
α+ β − 2 +

√
3(α− β)i

2(1 + α+ β)

=⇒ λ3 =
−b−

√
∆

2
=
α+ β − 2−

√
3(α− β)i

2(1 + α+ β)
.

The real part of these eigenvalues is

Re (λ2) = Re (λ3) =
α+ β − 2

2(1 + α+ β)
> 0, (3.54)

since α + β > 2 by hypothesis. The interior solution is also a saddle since it has eigenvalues with
both positive and negative real parts. Therefore, this system does not present stable equilibrium
points.

The system could display an unbounded dynamics, and in order to investigate whether this is
the case, it is possible to investigate the total density S = X1 +X2 +X3, so that

dS

dt
=

dX1

dt
+

dX2

dt
+

dX3

dt
dS

dt
= X1 +X2 +X3 −

(
X2

1 +X2
2 +X2

3 + (α+ β)(X1X2 +X1X3 +X2X3)
)
. (3.55)

In order to compare dS
dt to the logistic growth, let us define a function L(S) = S(1− S), which

can be expanded in terms of X1, X2 and X3 as

L = S(1− S)

L = (X1 +X2 +X3)[1− (X1 +X2 +X3)]

L = X1 +X2 +X3 −
[
X2

1 +X2
2 +X2

3 + 2(X1X2 +X1X3 +X2X3)
]
.

Therefore,

dS

dt
− L = [2− (α+ β)](X1X2 +X1X3 +X2X3) ≤ 0

=⇒ dS

dt
≤ S(1− S).

The total density will always increase at a lower rate than a corresponding logistic model. Since
we have shown in section 3.1.2 that the logistic model is bounded, the model (3.51) is also bounded
under the condition that α + β > 2. In order to investigate what is the dynamics of this system,
it is useful to define the function P

(
~X
)

= X1X2X3, for which

dP

dt
=

dX1

dt
X2X3 +X1

dX2

dt
X3 +X1X2

dX3

dt
= X1X2X3(3−X1 − αX2 − βX3 − βX1 −X2 − αX3 − βX1 − αX2 −X3)

= P (3− (1 + α+ β)S). (3.56)
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It is then possible to define the Lyapunov function V ( ~X) = (P ( ~X))
/

(S( ~X)3 + ε) in which ε

is an arbitrarily small number. This Lyapunov function is positive semidefinite, since ~X ∈ R3
≥0

with the function vanishing on the boundary of R3
≥0 : V (X1, 0, 0) = V (0, X2, 0) = V (0, 0, X3) = 0.

Observe that

dV

dt
=

d

dt

(
P

S3 + ε

)

=

dP

dt

(
S3 + ε

)
− P dS3

dt
S6 + S3ε+ ε2

=⇒ lim
ε→0

dV

dt
=

dP

dt
S3 − 3PS2 dS

dt
S6 ,

and thus by making ε sufficiently small, the derivative of the Lyapunov function will be completely

determined by
d

dt

(
P

S3

)
. Therefore

d

dt

(
P

S3

)
=

dP

dt
S3 − 3PS2 dS

dt
S6

=
P

S4

[
S(3− (1 + α+ β)S)− 3S + 3

[
X2

1 +X2
2 +X2

3 + (α+ β)(X1X2 +X1X3 +X2X3)
]]

=
P

S4
[ − (1 + α+ β)

(
X2

1 +X2
2 +X2

3 + 2X1X2 + 2X1X3 + 2X2X3

)
+

+ 3
[
X2

1 +X2
2 +X2

3 + (α+ β)(X1X2 +X1X3 +X2X3)
]

]

=
P

S4

[
(X1 −X2)

2
+ (X1 −X3)

2
+ (X2 −X3)

2
+ (α+ β)

(
X1X2 +X1X3 +X2X3 −X2

1 −X2
2 −X2

3

)]

=
P

S4

[
(X1 −X2)

2
+ (X1 −X3)

2
+ (X2 −X3)

2 −
(
α+ β

2

)[
(X1 −X2)

2
+ (X1 −X3)

2
+ (X2 −X3)

2
]]

=
P

S4

(
1− α+ β

2

)[
(X1 −X2)

2
+ (X1 −X3)

2
+ (X2 −X3)

2
]
,

and thus V
(
~X
)
is negative semi-definite as

d

dt

(
P

S3

)
≤ 0, with

d

dt

(
P

S3

)
= 0 being true on the

boundaries of R3
≥0 and on the diagonal X1 = X2 = X3. If X1 = X2 = X3, the system can be

written as
dXi

dt
= Xi(1− (1 + α+ β)Xi) ∀i which is a set of three uncoupled logistic equations

with carrying capacity 1
/

(1 + α+ β). This diagonal line is thus the α-limit set of the interior
equilibrium point.

It is also possible to conclude that the boundary of R3
≥0 is a ω-limit set for the region R3

≥0 \
{(x, x, x) : x ∈ R}. Therefore to understand the dynamics of the system, it is necessary to study
the behavior of the flow at the boundary. Since the system is symmetric by a cyclic replacement
of variables ( X1 → X2, X2 → X3, X3 → X1 for instance), it is necessary to study only one of the
boundaries.

Taking X3 = 0, the model is then a two dimensional generalized Lotka-Volterra system, the
behavior of which has been thoroughly studied in section 3.1.3. For this particular system, since
α > 1, the population 1 outcompetes population 2, which go extinct for any initial condition in the
(restricted) state-space with non-zero densities for both populations. Therefore, the entire region
{X1, X2, 0} \ {0, X2, 0} ⊂ R3

≥0 is the ω-limit of the equilibrium point ~X∗1 and there is one orbit O1

going from ~X∗2 to ~X∗1 .
By the symmetry of the system, there are two other orbits, O2 and O3 which join the fixed

points ~X∗3 to ~X∗2 and ~X∗1 to ~X∗3 , respectively. Thus it is possible to conclude that the ω-set of the
whole system is the union of the three orbits O1,O2,O3 and the saddles ~X∗1 ,

~X∗2 ,
~X∗3 . This set is

called an heteroclinic cycle, which joins different equilibrium points with closed orbits so that the
whole system is periodic.

Even though this is a very particular example, it presents enough evidence that limit cycles are
possible in the generalized Lotka-Volterra model with more than two dimensions.
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3.1.4.9 Chaos

Since all dynamics are possible for a generalized Lotka-Volterra model (3.27) with a sufficient num-
ber of populations (Smale 1976), it is clear that chaotic dynamics can be found for these systems.
Indeed most of the evidence for the existence of chaos in this model is based on examples (Hof-
bauer and Sigmund 1998). Nevertheless, analytical investigations also corroborate the existence of
chaotic dynamics (Kozlov and Vakulenko 2013).

Following (Arneodo, Coullet, and Tresser 1980), a slightly different parametrization of the gLV
model with three interacting populations displays chaotic behavior. Consider the model

dNi
dt

= Ni




3∑

j=1

αij (1−Nj)


 (3.57)

with the parametrization

(αij) =




0.5 0.4 0.1
−0.5 −0.1 0.1
1.43 0.1 0.1


.

For any initial condition, this system evolves into a strange attractor. This highlights the
possibility of chaotic behavior in Lotka-Volterra models with N ≥ 3.

Figure 3.4 shows the three-dimensional state space of the four possible dynamics. It is possible
to observe the strange attractor of the chaotic system presented with its typical turns and twists.

3.1.4.10 The Densities at The Equilibrium Point are the Time Average

Even when the equilibrium of some particular gLV system is not stable, it still carries valuable
information. In particular, if some system has an equilibrium point ~X∗, ~X∗ ∈ RN≥0, it is possible
to show that the time average of the populations densities are equal to ~X∗. The time average is
defined as

〈
~X
〉

=
1

T

∫ τ+T

τ

~X(t) dt , (3.58)

in which ~X(t) is the vector of populations’ densities at time t. By performing a change of variables
in the gLV model (3.1), such that ~y = log ~X, it follows that

dXi

dt
=

dXi

d logXi

d logXi

dt

= Xi
d logXi

dt

=⇒ Xi
d logXi

dt
= Xiri

(
1 +

∑
aijXj

)

d logXi

dt
= ri

(
1 +

∑
aijXj

)
.

By converting the expression above into vectorial notation and computing the time average on
both sides of the equation using the fundamental theorem of calculus, it follows that

1

T

∫ τ+T

τ

d log ~X

dt
dt =

diag (~r)

T

∫ τ+T

τ

(
1 + A ~X

)
dt

diag (~r)
−1

T
log ~X

∣∣∣∣
τ+T

τ

=
1

T

∫ τ+T

τ

(
1 + A ~X

)
dt . (3.59)

The system could display three distinct dynamical behaviors. If the system is evolving towards
a stable equilibrium point, it follows that ~X(τ) ≈ ~X(τ +T ) for sufficient large τ so that the system
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B

Figure 3.4: Examples of Dynamics in gLV-3D: Examples of the state space curves display-
ing the evolution of three dimensional generalized Lotka-Volterra systems with stable equilibrium
points, unbounded dynamics, limit cycles, and chaotic dynamics are shown. A: The system (3.51)
with α = β = 0.5 presents a stable equilibrium point in which X∗1 = X∗2 = X∗3 = 0.5, the stability
of this solution can be verified through the equation (3.54) (May and Leonard 1975). B: The sys-
tem (3.51) with α = −0.8, β = −1.3 presents unlimited growth. Note that the tick labels indicate
values in ’tera’ = T = 1× 1012, highlighting the extreme "densities" that the variables can achieve
in limited time. C: The system (3.51) with α = 0.8, β = 1.3 presents an heteroclinic orbit which
is a limit cycle of the system (May and Leonard 1975). D: The model (3.57) with parametrization
(3.58) shows a distinct strange attractor, which is a fingerprint of chaos (Arneodo, Coullet, and
Tresser 1980).

is already on the vicinity of the equilibrium point and any T . If on the vicinity of a limit cycle,
there is a well defined period T such that ~X(τ) ≈ ~X(τ+T ) for sufficient large τ . Lastly, in a chaotic
dynamics the system display dense periodic orbits which are limited in some region S ⊂ RN≥0, in this
circumstances, the largest difference of to elements in this set is finite, say ~X(τ)− ~X(τ + T ) ≤ ~M
for any T .

For the equilibria and periodic solutions, the equation (3.59) reads

1

T

∫ τ+T

τ

A ~X dt+
�
�
��
1

T

T
~1 =

diag (~r)
−1

T
× 0

A
1

T

∫ τ+T

τ

~X dt = −~1

=⇒
〈
~X
〉

=
1

T

∫ τ+T

τ

~X dt = −A−1~1 = ~X∗ . (3.60)

For the chaotic solution it is possible to calculate
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1

T

∫ τ+T

τ

A ~X dt+
�
�
��
1

T

T
~1 = diag (~r)

−1
lim
T→∞

~X(τ)− ~X(τ + T )

T
= 0

A
1

T

∫ τ+T

τ

~X dt = −~1

=⇒
〈
~X
〉

=
1

T

∫ τ+T

τ

~X dt = −A−1~1 = ~X∗ � (3.61)

Thus, we conclude that the time average for sufficiently large T is equal to the equilibrium
point for all bounded attractors.

3.2 Interplay between Structure and Dynamics in Ecological
Communities

This section aims to present the state of the art of research focused on integrating ecological
structure and dynamics of networks. Firstly we briefly address why and how large ecological com-
munities are modeled by dynamical systems (section 3.2.1) and complex networks (section 3.2.2),
and then review the literature focusing on the topological classifications of ecological communities
(section 3.2.3) and the many facets of the interplay between the stability and structure of these
ecological communities (3.2.4).

3.2.1 Ecological Communities as Dynamical Systems
The innovative idea of studying ecological systems through mathematical models put forward by
Lotka (1920) and Volterra (1926) opened a tradition of applying techniques derived from dynamical
systems theory into ecological questions. Although several systems with few interacting species
are studied through modeling, speciose ecological communities can also benefit from a dynamical
system description (May 1972b).

In ecological models, the abundance, density, or biomass of the populations often play the role
of state variables, and the interactions between populations are the main drivers of changes in
these variables.

Indeed, Lotka indicated that the per-capita growth rate of a given population should be a
function of the densities of all populations in the community (Lotka 1920). This unspecified
function was then considered a multilinear function representing the effect of each species’ density
on the growth rate, also known as the law of masses. Consequently, a community model in which
populations’ per capita growth rate is a multilinear function considering populations’ densities as
variables is a generalized Lotka-Volterra model (gLV) (Hofbauer and Sigmund 1998). If Xi, i ∈
1, 2, . . . , N represent the density of each of the N populations in the community, in the gLV
framework, its per capita growth rate is given by the equation (3.1). Although this model does not
incorporate any functional response besides the law of masses, its impact in theoretical ecology is
vast.

The advantages of such a "simple" model reside both in its mathematical tractability and the
relative ease of interpreting its features and results in the light of ecological theory. Overall, since
the linear function is a truncated Taylor expansion of an arbitrary derivable function, all possible
ecological models resemble the gLV if analyzed in the vicinity of their respective equilibria (as
seen in Rohr, Saavedra, and Bascompte 2014, for example). Indeed, this model can display any
asymptotic dynamics for the densities of the populations and thus could, in principle, represent
any real ecological system with the appropriate parametrization, as discussed in the section 3.1.
For instance, May 1972a demonstrated the importance of limit-cycles in predator-prey systems,
while Gonze et al. 2017 discussed that multistability could mechanistically explain the alternative
states in ecological communities using the gLV. Nonetheless, the effect of the density of other pop-
ulations on the growth rate of a given population can be represented as other functional responses
when particular features of this interaction, such as predator satiation, are considered (Holling
1959). Certainly, non-linear functional responses can be an important consideration in ecological
models, impacting the stability of ecological communities (Qian and Akçay 2020). Altogether, the
generalized Lotka-Volterra can be considered a standard model for multispecies communities.
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Unsurprisingly, the gLV model has been extensively used to investigate ecological communities
in many circumstances: Inference of interactions among taxa from data (Xiao et al. 2017; Maynard,
Miller, and Allesina 2020); Incorporation of microbial interactions for studies on the microbiome
(Succurro and Ebenhöh 2018; Faust and Raes 2012; Gonze et al. 2018); Evaluation of the accuracy
of computational techniques in microbiology and theoretical exploration of the structural role of
keystone taxa (Berry and Widder 2014); Investigation on the stability and coexistence of generic
communities (Gibbs et al. 2018; Barabás, J. Michalska-Smith, and Allesina 2016).

3.2.2 Ecological Communities as Complex Networks

In a community, each population might interact with all remaining populations leading to several
possible interactions among pairs that grow with the square of community richness. For example,
in a community composed of 300 populations, there could be up to almost one hundred thousand
possible pairwise interactions. However, in speciose communities, the interactions between pop-
ulations have non-trivial distributions, and many population pairs do not interact in an effective
manner (Pinheiro et al. 2019; Paine 1992; Dunne 2006). As a result, it is reasonable that the
pattern of ecological interactions among populations in a community can be studied employing a
complex network representation (Guimarães 2020).

Note that community-level interactions are a consequence of interactions between organisms,
and thus the interactions between populations are an abstraction of interactions between individu-
als (Guimarães 2020). Importantly, ecological interactions can have positive or negative influences
of varying intensities on both populations (Paine 1992). Therefore, the effects of all interactions
among individuals from two populations are summarized into a population-level coefficient that
encapsulates information on frequency, type, and intensity of pairwise interactions. The intensity
and direction of the interaction’s influence are then denoted by the absolute value and signal of
the interaction coefficient, respectively. Suppose this coefficient is defined as the relative effect of
population j on population i growth rate compared to the law of masses. In that case, this is
identical to the aij coefficient of the gLV model (Staniczenko, Kopp, and Allesina 2013; Dormann,
Fründ, and Schaefer 2017).

In order to represent the structure of interactions at this level of biological organization, ecolog-
ical networks are constructed considering populations and interactions as nodes and edges/links,
respectively. This network of ecological interactions can be undirected so that two nodes A and
B are symmetrically connected if there is any ecological relation involving both populations. Al-
ternatively, the network can be directed, so that there is a link from A to B if, and only if, A has
relevant influence on population B (Dunne 2006).

Therefore, the non-trivial pattern of mutual pairwise interactions among populations can be
fully represented by directed and weighted edges in a generic ecological network encompassing all
possible interaction types. Besides, there is a direct connection between the ecological community
representation as a complex network and as a dynamical system: The off-diagonal elements of
the interaction matrix A = (aij) which describe interspecific interaction coefficients between state
variables in the gLV represent the weights of links between populations in the directed complex
network (Succurro and Ebenhöh 2018). Indeed, the interaction matrix of the dynamical model is
the adjacency matrix of the directed complex network if the elements on the main diagonal are
not considered. For an ecological community, these distinct mathematical objects are equivalent:
the matrix of interactions determining the community’s evolution in time is the adjacency matrix
of the weighted, directed ecological network that conveys the community structure.

3.2.3 The Topology of Ecological Community Networks

One of the main advantages of network representation is the possibility to highlight patterns
of interactions’ distribution in a network, i.e., its interaction structure, architecture, or topology
(Guimarães 2020). In this sense, much effort has been made to investigate the topological properties
of ecological networks. Due to the challenge of constructing well-resolved networks encompassing
an entire community and all possible interactions therein, much of the scientific effort focused
on particular types of interactions (food-webs, competitive and mutualistic networks) (Dormann,
Fründ, and Schaefer 2017; Dunne 2006). Despite intrinsic difficulties, it is a long-standing consensus
that ecological communities have non-random topology (Dunne 2006; Guimarães 2020; Dormann,
Fründ, and Schaefer 2017; Takemoto and Iida 2019).
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Food-web topology is known to present hierarchical pattern (Mougi and Kondoh 2014) and
nested structure (Kondoh, Kato, and Sakato 2010). In addition, some food-webs also present small
world properties (Watts and Strogatz 1998; Dunne 2006). Small world property is characterized by
the short path lengths between nodes (Watts and Strogatz 1998). It can be understood ecologically
as indicating that few intermediary populations separate two populations selected at random in
the network representation of the community. Some food-webs also display scale-free distribution
of interactions (Solé and Montoya 2001; Dunne, Williams, and Martinez 2002a) while most have
exponential degree distribution compatible with random models (Dunne, Williams, and Martinez
2002a). In the scale-free structure, the distribution of interactions between populations follows a
power-law, with few populations concentrating most of the network’s ecological interactions. On
the other hand, the structural organization analysis of 52 real species-rich plant-animal mutualistic
networks found that they are highly nested, indicating that in these communities, specialist species
interacted with subsets of the interaction partners of generalist species (Bascompte et al. 2003;
Almeida-Neto et al. 2008).

While most theories and techniques used to study ecological networks were developed in the
context of macro-organisms, microbial communities offer a unique opportunity to extend this area.
Indeed, studies on the microbial interaction network can encompass all possible types of interac-
tions and incorporate the entire community. In particular, high throughput sequencing techniques
allowed profiling the relative densities of different taxa in microbial communities through time,
but retrieving interaction information from this data is a scientific challenge (Berry and Widder
2014). Traditional techniques rely on co-occurrence networks’ constructed through correlations
among taxa densities from multiple samples of taxonomically annotated metagenomes (Faust and
Raes 2012; Li et al. 2016). However, the recovery of interactions from correlations was shown
to yield a large proportion of false positives and/or negatives on the resulting network depend-
ing on the properties of underlying interactions and methodological procedures employed (Berry
and Widder 2014). These caveats hinder the interpretability of any topological features based
on such results. On the bright side, new dynamical-systems derived techniques could represent a
significant advancement in this field (Xiao et al. 2017; Shang et al. 2017; Maynard, Miller, and
Allesina 2020). Altogether, current knowledge indicates that microbial ecological networks have
non-random scale-free and clustered topologies (Faust and Raes 2012) and that competition is the
most common observed interaction among culturable microbial species (Foster and Bell 2012).

In order to characterize the topological features of ecological networks, one of the most useful
measures is the proportion of existent interactions among populations in relation to the maximum
number of interactions that could be expected from the number of nodes in the network, i.e.
Con = E

/
N(N − 1) or Con′ = E

/
N2. Literature on network theory associates this measure

to the density of the network (see 2.2.2.3), but in ecology it is often referred as connectance
or interactive connectance (Dunne 2006). Even if definitions of connectance and density differ
slightly, this difference tends to zero when considering the limit of large number of populations
(nodes) in the community since limN→∞ Con′ = limN→∞ Con = D. Notably, ecological networks
are characterized by small connectance values, in the range of 3% to 30% but generally near 10%
(Dunne 2006). Albeit the connectance indicates how densely connected a given network is, the
distribution of connections among nodes might be very uneven (Guimarães 2020).

The network connectance also affects the interplay between other topological measures. Fortuna
et al. (2010) found a positive correlation between modularity and nestedness at low connectance,
whereas these measures are negatively correlated at high connectance. Indeed, for a fixed number of
species, an increase in the connectance is associated with increased nestedness values in mutualistic
networks (Bascompte et al. 2003). Additionally, correlations between nestedness and dissortativity
have also been reported in the literature (Johnson and Omland 2004).

Since the interconnections between populations in an ecological network reflect ecological inter-
actions between individuals from these populations, it is natural to ask whether different interaction
types would originate topologically distinct networks. Indeed, this question was posed as a chal-
lenge to the scientific community by Michalska-Smith and Allesina (2019). The challenge is that
despite the expectation that different types of interactions would originate distinct topologies, it
is difficult to identify correctly which type(s) of interaction(s) originated a given network having
only its topology as information. An early answer to this question points out that it is possible to
effectively distinguish between antagonistic and mutualistic ecological networks by incorporating
environmental information (Song and Saavedra 2020).
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3.2.4 Structure and Stability of Ecological Networks
The fact that ecological communities have a non-random structure and are ecologically stable to
some extent, promoted the question of whether there is a relation between topological properties
and stability (Dunne 2006). The expectation is that the topological features of the communities
could ultimately be related to evolutionary or aggregation processes.

Indeed, the factors that determine the stability of ecological communities is a central question in
ecology. A seminal work from May (1972b) started a venue of investigation which was extended for
almost half-century through the works of many scientists. Nevertheless, even today, this question
is still open to new contributions.

In order to better address the interplay between structure and stability, it is relevant to high-
light some aspects of these two essential concepts. First, community structure can be related to the
pattern of presence/absence of interactions, the types of interaction, or, ultimately, the intensity
of such interactions (Guimarães 2020). Even though these aspects of the community structure are
interdependent, this division aims to identify distinct features contributing to ecological commu-
nities’ overall complexity.

On the other hand, ecological stability can have many definitions, as discussed in section 2.3.4.
Although all definitions of stability are related to some extent, each contribution to this long-
standing debate focused on one or a few of them. Accordingly, differences in findings concerning
how structure and stability are related can in part be ascribed to the different aspects of structure
and stability concepts studied.

An overview of the many studies comparing structural features of communities and their sta-
bility is presented in the following. While this review is not intended to be complete, an effort is
made to reflect current knowledge.

Richness and Stability Perhaps one of the most striking aspects of natural environments is
its richness. In accordance, how can so many populations coexist in a (rich) community is a core
question in community ecology. The mainstream answer to this seminal question before 1970
advocated that richer and more connected communities were more stable (Dunne 2006). May
(1972b) challenged this view by arguing that rich communities tend to be less stable, considering
local asymptotic stability or resilience. The criterion3derived by May (1972b) for the stability of
communities with random interactions was

µ
√
SD < 1, (3.62)

with mean intensity of interaction, richness and the density of interactions denoted by µ, S and
D, respectively.

This criterion indicates that rich communities would inevitably be unstable, thus contradicting
the observed rich and complex communities. Nonetheless, recent theoretical and computational
results indicate that May’s criterion does not preclude rich communities. In these frameworks,
speciose communities would arise from even richer putative communities (Serván et al. 2018)
or iterative assembly processes (Maynard, Serván, and Allesina 2018; Qian and Akçay 2020).
Specifically, Serván et al. (2018) showed that from an initial putative community composed of S
populations assembled randomly, approximately S/2 populations would be able to thrive if the
non-invasible solution is assumed to be globally stable. Interestingly, the authors point out that
this result would also be found if there were no interspecific interactions in the community.

Connectance and Stability Several works investigated which properties of rich communities
allow them to be stable, with some early studies in empirical food webs indicating an inverse scaling
between richness and density, i.e., S ∝ D−1 (Dunne 2006). Nevertheless, this correlation was a
consequence of methodological inconsistencies in the network data available at that time (Dunne
2006)

In fact, higher connectance appears to increase the robustness of food-webs (Dunne, Williams,
and Martinez 2002b), while having the opposite effect in coexistence and resilience (Thébault and
Fontaine 2010). It is argued that increasing connectance increases the tolerance to the removal of
most highly connected nodes due to an increase in the number of paths in the network, therefore

3May’s work was based on random matrix techniques, initially developed by Wigner and others as a tool for
solving the problem of excited states in the atomic nucleus (May 1972b; Wigner 1967). An excellent example of
fruitful interdisciplinarity between physics and ecology, upon which this work is constructed.
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diminishing the probability that any single predator would be left without prey after such disruption
event (Dunne, Williams, and Martinez 2002b).

For competitive communities in which some individual populations had oscillatory dynamics
when isolated, the increase in community size and connectance was also found to positively affect
the stability (Fowler 2009). Based on a discrete generalized Lotka-Volterra map, Fowler (2009)
argued that by increasing the number of links in these communities, the per capita growth rate of
species reduces due to an increase in competitive feed-backs. Ultimately, the increase in density
stabilized and reduced the probability of out-of-equilibrium dynamics for the whole community.
However, the stabilizing effect of size and connectance was limited for large densely connected com-
petitive communities with oscillatory dynamics and all communities without oscillatory dynamics,
possibly due to large competition leading to competitive exclusion. On the other hand, con-
nectance was shown to affect the coexistence and resilience of mutualistic communities (Thébault
and Fontaine 2010) positively.

Effects of Network Topology in Stability One of the main criticism of May’s findings on
the instability of large communities is his assumption of random networks (May 1972b) since the
topology of ecological networks is not random (see section 3.2.3). As a result, several studies
were conducted to elucidate topology’s influence upon stability, either using a network model with
distinctive topological features or directly assessing the effect of a particular topological measure
upon stability (see section 2.2 for definitions on networks measures and models).

In particular, it was shown that the effect of removal of highly connected populations cascade
across the food-webs, leading to topologically determined secondary extinctions (Solé and Montoya
2001; Dunne, Williams, and Martinez 2002b). The result that food-webs are more vulnerable to
selective removal of highly connected nodes is similar to the ones found for scale-free networks
and distinct from random topology features. Watts and Strogatz (1998) also hypothesized that
the small-world feature of some ecological networks would lead to susceptibility to perturbation,
as more populations would be in the neighborhood of any perturbed population due to small
average path lengths. Indeed, modeling also indicated that network structure plays a crucial role
in maintaining community diversity, with food-web like networks being more stable than its random
counterparts (Mougi and Kondoh 2014). For instance, it was found that topologies with increased
modularity can have modest positive effects on ecological networks’ stability, while antimodularity
has powerful destabilizing effects (Thébault and Fontaine 2010; Grilli, Rogers, and Allesina 2016).

Nestedness’ Effects on Stability Among all possible topological measures in ecological net-
works, nestedness perhaps received the most attention. It was pointed out that nested community
structures are associated to increased (e.g. Thébault and Fontaine 2010) and decreased (e.g Allesina
and Tang 2012) mutualistic community stability. Burgos et al. (2007) found that the nested pat-
tern of contacts is the best possible one as far as robustness is concerned, but only when the least
linked species have a greater probability of becoming extinct. Additionally, Rohr, Saavedra, and
Bascompte (2014) studied structural stability and its relation to robustness in mutualistic sys-
tems and determined that the nested network topology maximizes structural stability. Indeed, the
nested configuration was also found to benefit coexistence in mutualistic communities (Bastolla et
al. 2009). However, Barabás, J. Michalska-Smith, and Allesina (2016) also showed that nestedness
structure appears in most (and least) resilient, competitive networks.

Despite significant advances in our understanding of the effects of nested network structure
on different aspects of stability, it is essential to note that the principal measure of nestedness is
based on unweighted bipartite networks (Almeida-Neto et al. 2008). A robust generalization of
this concept to weighted networks demonstrated that many unweighted nested networks had non-
nested weighted counterparts when quantitative data concerning interactions were incorporated
(Staniczenko, Kopp, and Allesina 2013). Furthermore, the nested distribution of interactions is
also guaranteed to be associated with low community resilience (Staniczenko, Kopp, and Allesina
2013).

Note that the general underlying assumption linking the structure of networks and stability
is that evolution shapes the structure of ecological interactions (Segar et al. 2020). Therefore, if
some pattern is found in ecological communities, this pattern would probably have been selected
to improve the stability of the community. There is, however, the possibility that these patterns
are byproducts of other processes and not selected per se. For instance, Maynard, Serván, and
Allesina (2018) showed that different assembly processes could lead to different stable community
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structures, further suggesting that these structures could be "completely unrelated to stability or
selection".

Types of Interaction Another critical assumption May (1972b) implicitly used when assess-
ing the stability of communities with random interactions was the proportions of each type of
ecological interaction in the network. The assumption of random interactions results in 50% of
exploitative interactions and 25% of mutualistic and competitive interactions when all possible
pairs of populations interact, i.e., in a complete network.

Despite this early focus on communities with multiple types of ecological interactions, later de-
velopments focused on networks constructed for a single type of interaction (Dunne 2006). Indeed,
food webs are mainly composed of predator-prey interactions, while mutualistic interactions are
fingerprints of plant-pollinator networks. Despite this appealing simplicity, natural communities
are often composed of a diversity of interactions, which are thought to have specific impacts on
community stability and richness.

The general aim of studies focusing on the effect of interaction types upon networks’ stability
is to indicate which interactions improve ecological communities’ stability. Indeed, mutualism was
found to have a destabilizing effect on communities (Coyte, Schluter, and Foster 2015; Allesina and
Tang 2012). Specifically, mutualistic interactions might generate unbounded positive feedbacks if
the per capita effect of the mutualistic taxa on another is independent of their population density
(Qian and Akçay 2020), see section 3.1.4.5 for analytical results on this. Nevertheless, if per
capita mutualistic benefits are density-dependent and limited, mutualism can promote community
richness and resistance to invasions (external stability) (Qian and Akçay 2020).

In other direction, it was pointed out that diversity of interactions could improve stability so
that an intermediate proportion of each interaction type in the community was able to stabilize
community dynamics (Mougi and Kondoh 2012; Mougi and Kondoh 2014).

In accordance, Qian and Akçay (2020) used sequentially assembled communities and non-
linear functional responses to show that population dynamics converges to equilibrium for any
combination of types of interactions. Furthermore, the authors demonstrated that communities
with many exploitative interactions were less prone to invasion. This result is in accordance with
previous results that found that exploitative interactions had the most significant contribution to
community stability (Allesina and Tang 2012).

Intensity of Interaction and Stability Apart from interaction topology and types, the in-
tensity of interaction also impacts community dynamics. Once again, this result was firstly found
by May (1972b), which indicated that an increased average interaction intensity would lead to
unstable communities (see equation (3.62)). Since then, it was shown that most interactions in
an ecological network are indeed weak (Paine 1992; Coyte, Schluter, and Foster 2015; Guimarães
2020). Additionally, further theoretical support to the result that "less intense interactions in-
crease stability" was put forward (e.g. Rohr, Saavedra, and Bascompte 2014; Coyte, Schluter, and
Foster 2015), but some authors challenged the accuracy of this result (Fowler 2009; Allesina and
Tang 2012). Indeed, Serván et al. (2018) pointed out that increased intraspecific competition is
beneficial for stability in rich random communities. It was also found that the effect of an increase
in the mean of the distribution of coefficients related to interspecific interactions is not as relevant
for community resilience as its variance (Allesina et al. 2015). This result is also corroborated
by Fowler (2009), who found that increasing variance of interactions diminished the stability of
communities if the mean was kept constant.

Throughout our research, we focus on the resilience and coexistence aspects of the community.
Following the literature, resilience is measured by considering the rightmost eigenvalues of the
interaction matrix, and coexistence is defined as the number of extant populations after system
stabilization (e.g. Coyte, Schluter, and Foster 2015; Barabás, J. Michalska-Smith, and Allesina
2016). We also address the community’s asymptotic dynamical behavior, identifying equilibrium
points, cyclic solutions, and unbounded dynamics.
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Chapter 4

Methodology

In this chapter, the techniques employed to generate and analyze the numerical data are presented.
Our methodology is centered on the generation of artificial ecological communities. The artificial
communities are represented by random networks constructed through a random graph generator
with a predefined number of populations, densities of interaction, distributions of intensities, and
distributions of types of interactions.

The code used to simulate all data is available through GitHub at https://github.com/
r-menezes/simulation-econetworks. All the code is based on Python (version 3.6) and Cython
(version 0.29) programming languages. Cython is a Python and C/C++ static compiler that allows
writing C code with Python syntax and integration of C and Python environments.

In order to summarize the steps of the methodology, we constructed figure 4.1, divided into three
parts. Figure 4.1 presents a schematic representation of these stages, with each stage corresponding
to a panel. It is possible to see the simulations and analysis workflow and the main elements used
to construct and characterize the simulated communities. In the following, we will provide further
technical information on each of these stages.

1. Input Parameters: the generation of the design of the experiment and construction of the
initial network, represented in panel 1 of figure 4.1.

(a) We constructed an experimental design with 1000 distinct sets of input parameters
homogeneously distributed across a preset range satisfying a Latin Hypercube design.

(b) We performed a combination of the distinct sets of input parameters generated and each
of the five different random graph algorithms defined in section 2.2.3. Each graph was
associated with each set of input parameters generated by the Latin Hypercube design,
amounting to 5000 distinct combinations of algorithms and parameters in total, referred
to as experiments.

(c) We generated 10 random seeds for each experiment. Each random seed, associated with
the experiment’s input parameters, is a replicate.

(d) For each replicate, we used the specified algorithm and input density to construct an
undirected random graph. All generated graphs had 400 nodes. In total, 50 000 distinct
graphs were constructed, in accordance with the total number of replicates.

(e) For each edge on the undirected random graph, we associated one type of ecological
interaction, the distribution of which was determined by experiments’ input parame-
ters. The mutual influence of each adjacent node upon the other was determined as
the modulus of a number taken from a normal distribution centered in zero and with
standard deviation set by the input parameters. By the end of this process, the undi-
rected network was effectively transformed into a weighted, directed random network,
hereafter referred to as initial network.

2. Numerical Integration: the parametrization of the generalized Lotka-Volterra model from
the initial network and the simulation of the temporal evolution of the system, represented
in panel 2 of figure 4.1.

(a) The matrix of interactions of the generalized Lotka-Volterra model (3.1) was constructed
from the initial network’s adjacency matrix by assuming all populations have intraspe-
cific competition and setting all elements of the main diagonal to minus one (aii = −1).
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Figure 4.1: (previous page) Schematic Representation of the Methodology: The colors
represent each stage of the methodological pipeline used in this work. A detailed description of
each step in provided in the text.

(b) We simulated the temporal evolution of the community by setting the intrinsic growth
rate of all populations to one (ri = 1) and starting the simulation with all populations at
a density equal to its carrying capacity (Xi(t = 0) = 1). During the temporal evolution,
populations that attained densities lower than a millionth (10−6) of the carrying capacity
were considered extinct. The simulation was finished when: a) a cycle or equilibrium
point was detected; b) any population’s density surpassed a million (106) times its
carrying capacity; c) the time t = 2000 was reached.

3. Measures (Outputs): measurement of topological and dynamical properties of each repli-
cate, represented in panel 3 of figure 4.1.

(a) We recorded the attractor detected at the end of the numerical integration of the dynam-
ical model. The algorithmic implementation of the detection of each type of attractors
was based on the analytical properties studied in section 3.1.4.

(b) The rightmost eigenvalue and other topological measures were logged for the initial
network.

(c) The final network was constructed by removing nodes and edges associated with extinct
populations from the initial network.

(d) The dynamical and topological properties of the final network were recorded.

Importantly, we generated networks for 5000 unique combinations of input parameters, con-
sidering the topologies, densities, distribution of types of interaction, and standard deviation of
interaction intensities. Each unique combination of input parameters will be referred to as an
experiment. Each experiment was repeated ten times, with different random seeds. The random
seed set the initial state of the pseudorandom number generator, leading to distinct topologies due
to the intrinsic randomness in the generation of the unweighted network and the distribution of
types and intensities of interactions. After the random seed has been determined, the numerical
simulation was deterministic. Each repetition of the experiment with a unique random seed is
referred as a replicate or scenario.

4.1 Input Parameters

The first stage in the simulation and analysis of the ecological networks is the parametrization and
construction of the initial network. To systematically perform the analysis, it is then necessary to
use a method to choose what sets of input parameters will be used in simulations from the unlimited
range of possibilities. First, the input variables used to construct the networks are described, and
then the Latin Hypercube Sampling (LHS) method is presented.

4.1.1 Network Topologies, Number of Nodes, and Densities
The algorithms to generate random graphs were: a version of Erdös-Renyi random graph; a random
regular graph obtained through a configurational algorithm; the algorithm of Watts-Strogatz with
probabilities of reconnection being one in one thousand, one in one-hundred and one in ten.

To generate random undirected graphs, we used the random graph generators made avail-
able by the NetworkX Python package (Hagberg, Schult, and Swart 2008). The Erdös-Renyi
random graph was constructed with the gnm_random_graph function. The Watts-Strogatz ran-
dom and random regular graphs were constructed with connected_watts_strogatz_graph and
random_regular_graph functions, respectively. All these functions have the number of nodes (N)
as input, and all networks were constructed with 400 nodes (N = 400).

Additionally, all generator functions have a parameter associated with the number of edges in
the network (see section 2.2.3). We chose to use network density as the input parameter. Therefore,
each function was called with connection-related parameters that allowed for the lowest relative
error between the generated network density and the input density. The absolute error between the
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input density and density of the generated network was always smaller than 3.7× 10−3 (median
7.5× 10−4).

The Watts-Strogatz algorithm has an additional parameter, which is the rewiring probability
(p). To capture distinct regions on the regular-random gradient, we simulated the Watts-Strogatz
topology with three distinct rewiring probabilities. Namely p = 0.001, p = 0.01, and p = 0.1,
with the p = 0.001 (p = 0.1) network being more akin to a regular (random) network (Watts and
Strogatz 1998).

4.1.2 Types of Interaction

A central aspect of our methodology is the possibility of considering multiple types of ecologi-
cal interactions in the same community. In accordance, each experiment was associated with a
particular proportion of competitive, cooperative, and exploitative interactions.

Through the text, we represent the competitive, cooperative, and exploitative interactions by
%−

/
−, %+

/
+, and %+

/
−, respectively. Since this is not a useful notation for algebraic manipu-

lation, consider pC , pM , pE to represent the proportion of Competition, Mutualism (cooperation),
and Exploitation. Then, the sum of the proportions of each type of interaction must be equal to
one:

pC + pM + pE = 1 (4.1)

Note that the equation (4.1) implies that it is always sufficient to specify two of the propor-
tions. Therefore, we chose to parametrize the networks using the proportion of cooperative and
competitive interactions and derive the proportion of exploitative interactions from (4.1).

A convenient way of representing the proportions of competition, cooperation, and exploitative
interaction is through a ternary plot. In a ternary plot, three variables can be represented in a 2-
simplex (a triangle) because they must satisfy the condition of summing to a constant total value.
Figure 4.2 presents the ternary plot for the types of interactions, indicating the plot’s essential
elements.

To associate a type of ecological interaction with each pair of interacting populations, we first
calculated the number of interactions of each type based on the total number of edges in the
(undirected) network, E, and pC and pM . The number of competitive and cooperative edges were
then EC = pCE and EM = pME rounded to the closest integer. The number of edges associated
with exploitative interactions was simply EE = E− EC − EM .

Second, we performed a random shuffle of the list of edges in the network. We then iterated
through this shuffled list, and the first EC edges were associated with competitive interactions,
the next EM were associated with cooperation. The remaining edges were assigned exploitative
interactions. Importantly, if an edge (u, v) was associated with exploitative interactions, there was
an equal probability that the interaction would benefit u or v.

After this second step, the final network was directed, as for each pair of connected nodes u
and v both the edges (u, v) and (v, u) existed.

4.1.3 Intensities of Interaction

The distribution of interaction strengths in the community was given by the absolute value of a
normal distribution centered at zero. In this framework, a larger standard deviation of the normal
distribution is associated with a higher proportion of strong interactions. By imposing that the
distribution is centered at zero, we ensured that for all distributions considered, there is always
a higher prevalence of weaker interactions, as observed in natural systems (Coyte, Schluter, and
Foster 2015). As the signal of interactions was predetermined by the type of interactions between
the two populations (previous section), only the modulus of each value drawn from this distribution
was relevant. In figure 4.3, it is possible to see the probability density function of the interaction
intensities for different values of its standard deviation, which serves as an input parameter.

To associate distinct interaction strengths to each interaction in the network, we iterated
through each edge in the directed network. For each edge, we set its weight to a random number
drawn from the normal distribution. Even though each weight could be arbitrarily close to zero,
zeros are not allowed, as this would fundamentally change the type of interaction. After allocating
strengths to all interactions in the network, each element aij of the adjacency matrix indicated the
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Figure 4.2: The ternary diagram depicts the proportion of interaction types: Each of
the triangle sides indicates one type of interaction, its color corresponds to legend color, and the
dashed lines cross the triangle indicating a constant proportion of the type of interaction with the
corresponding color. For instance, blue dashed lines indicate a constant exploitation value, which
can be read at the triangle’s left side. The triangle is covered in a hexagonal grid overlay with
a color gradient corresponding to the proportions of each interaction type represented by each
hexagon. Extreme values of each type of interaction are at the triangle corners and are colored in
correspondence to the interaction type: yellow left, red right, and blue top corners corresponding
to 100 % of the competition, cooperation, and exploitation, respectively.

influence of population j upon the growth rate of population i. The magnitude of the interaction
coefficient aij is the proportion of change in i’s growth rate due to j’s influence when the population
j is at its carrying capacity (see section 3.1.1).

Thus, the signal of aij and aji was determined by the type of interaction between both pop-
ulations. The magnitude of both influences was randomly and independently sampled from a
zero-centred normal distribution.

4.1.4 Statistical Parametrization
All sets of input parameters were generated before the simulation of the ecological communities.
The parameters were generated using a Latin Hypercube Sampling (LHS) method. The LHS
method allows for reduced variance when performing Monte Carlo (MC) simulations compared to
traditional random sampling (Stein 1987).

The LHS workflow involves determining the number of numerical input variables and generating
LHS samples on an n-dimensional hypercube. The input distribution of each variable is then
determined, and the resulting samples are then transformed into the input distribution through
quantile or inverse distribution functions. Since the Latin Hypercube samples are always uniformly
distributed in the range [0, 1], they can be used as quantile values of any other distribution.
Therefore, the LHS can provide samples from any statistical distribution, provided this distribution
has a well-defined inverse distribution function.

In our study, the standard deviations inputs were uniformly distributed from 0.2 to 2.0. The
density was also uniformly distributed from 0.05 to 0.5. However, the proportions of interactions are
not as simple since the proportion of cooperation and competition are not entirely independent.
In order to guarantee that input variables satisfy the relation (4.1), it was necessary to jointly
transform the variables (Frigyik, Kapila, and Gupta 2010).

We considered that the type of interactions follows a Dirichlet distribution with a shape pa-
rameter equal to one for the three dimensions. This assumption is equivalent to considering that
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Figure 4.3: Distributions of Interactions Intensities: The probability densities of the dis-
tributions of the absolute value of the coefficients of interaction for different standard deviations
are shown. The colors of the curves correspond to different standard deviations, with brighter
indicating larger standard deviations. It is possible to see that the values are more concentrated
around the origin for smaller values of the standard deviation. Correspondingly, larger standard
deviations are related to flatter distributions, with comparatively more intense interactions.

each possible combination of proportions of competitive, cooperative, and exploitative interactions
is equally likely. Under these assumptions, it was then possible to sample from the Dirichlet dis-
tribution by transforming three variables from the LHS using a quantile gamma distribution with
shape parameter also equal to the unity. When the variables’ values were normalized by their sum,
the result satisfied relation (4.1) and was sampled from the goal Dirichlet distribution (Frigyik,
Kapila, and Gupta 2010; Carnell 2020). Thus, this method allows for the uniform sampling of all
possible combinations of proportions of types of interactions while preserving the LHS properties.

Since only two variables are needed to completely determine the types of interaction, we only
used the proportion of competition and cooperation as input variables. The python function devel-
oped to make this transformation was based on a solution presented by Carnell (2020). Note that
the mean values of the proportion of competition and cooperation were 1/3 since all combinations
of types of interactions in the 2-simplex were equally probable.

The LHS was designed with Python package pyDOE2 (Sjögren and Svensson 2020). All variable
transformations were performed with our code and SciPy’s functions (Virtanen et al. 2020). Among
the different possible criteria for the Latin Hypercube Sampling provided by the function lhs from
the pyDOE2 package, we used the centermaxmin criterion. This criterion provided considerable
average distance and low correlations samples, as it can be seen on table 4.1. Generally, it is
desirable to have larger distances and smaller correlations between samples.

4.1.5 Replicates

For the simulation of the ecological communities, a random seed is a necessary additional input.
This random seed guarantees the reproducibility of the simulations since it determines all random
processes. For a given seed, the simulation is entirely deterministic.

For each set of input parameters (without the seed), ten distinct seeds were generated through
the SeedSequence function from NumPy’s random module (Harris et al. 2020). The random
generator used (PCG64) has a period of 2128.

In total, one thousand distinct sets of input parameters (proportion of competition and co-
operation, density, and standard deviation of intensities) were generated using the LHS method.
Every distinct set of input parameters was associated with each of the five topologies considered,
amounting to 5000 unique experiments. Ten unique seeds were associated with each experiment.
Overall, 50 000 unique replicates or scenarios were simulated.
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method distance correlation
max min ave median max min ave

center 1.96 0.02 0.88 0.88 0.01 −0.01 7.0× 10−3

maximin 1.98 0.02 0.88 0.88 0.02 −0.02 8.1× 10−3

centermaximin 2.01 0.03 0.88 0.88 7.6× 10−3 −0.01 5.8× 10−3

correlation 2.00 0.02 0.88 0.88 6.6× 10−3 −0.02 7.5× 10−3

None 2.01 0.02 0.88 0.88 0.01 −0.02 9.6× 10−3

Table 4.1: The characteristics of different LHS generation methods. For
each method, a Latin Hypercube design of experiment was constructed with 10 000
samples across 5 dimensions, with samples uniformly distributed between 0 and 1
in each dimension. Each sample is thus a five-dimensional vector with entries as the
outputs of the LHS algorithm. The Euclidean distance and correlations between
samples was calculated. The statistical descriptives for distance and correlation are
presented.

4.2 Temporal Evolution of Ecological Communities

The dynamical generalized Lotka-Volterra (gLV) model was parameterized from the ecological
network by setting the off-diagonal elements of the interaction matrix A to the values present of
the directed network’s adjacency matrix (M)ij = mij , i.e. aij = mij ∀i 6= j. The diagonal elements
of the interaction matrix were chosen to be minus one to account for intraspecific competition aii =
−1 ∀i. Additionally, in order to focus on the interaction matrix, the growth rate of all populations
was set to one (ri = 1 ∀i). The gLV and its Jacobian matrix were implemented computationally
using matrix-multiplication algorithms from the Basic Linear Algebra Subprograms (BLAS) library
made available through SciPy for improved performance (Virtanen et al. 2020). Although we
integrated the parametrized Lotka-Volterra model (3.1) numerically, the analytical background
that guarantees the asymptotic behavior was presented in section 3.1.4.

In order to integrate numerically the parametrized lotka-volterra model we set all the pop-
ulations initial value to half of their carrying capacity (Ki

/
2 = −2

/
aii = 1

/
2). The numerical

integration was performed through the LSODA algorithm, available through SciPy (Virtanen et al.
2020), with prescribed absolute and relative tolerances being 1× 10−7 and 1× 10−6, respectively.
This initial value problem solver is convenient for its varying time-steps and automatic detection
of stiffness. Additionally, SciPy provides local interpolants of the numerical solution so that it is
possible to get values for the densities of the populations at times that did not correspond to any
particular iteration of the LSODA integrator.

After initialization, the integrator was iterated repeatedly until a stopping condition was found.
At each iteration, the density of each variable was checked. If any population had a density above
a million times its carrying capacity (Xi ≤ 1× 106), the replicate would be associated with an
unbounded attractor. If the absolute value of the time derivative of each population’s densities
were smaller than ten times the prescribed absolute tolerance of the integrator, the replicate would
be associated with an equilibrium attractor.

The detection of cycles occurred after a transient time (t = 100) had elapsed and then once
every 100 integrator iterations. Then, interpolators spanning a time interval of 256 time units were
sampled at 1024 equally spaced intervals for all populations to detect the cycles. Note that each
iteration can correspond to different time increments due to varying time-steps of the algorithm.
In sequence, populations that eventually reached densities lower than 1× 10−6 were not taken
into account, as they were virtually extinct. We subtracted the population-level density mean
from the vector of each population’s densities to prepare this vector for a Fourier transformation.
We then performed a fast Fourier transformation using the rfftn function provided by SciPy.
Subsequentially, we used SciPy’s function find_peaks to find the peaks on the Fourier transformed
densities of each population individually. The peaks were then compared to check for common peaks
for all populations, which were then inversely Fourier transformed and used as putative periods.
Since the putative period could be slightly off the system’s actual period, we did a numerical
optimization of the period. This optimization was performed by choosing the period that minimizes
the maximum absolute distance between the vector of densities ~X(t) and ~X(t−T ′), in which T ′ was
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the putative period. This optimization was performed using SciPy’s function minimize_scalar
Finally, it was checked if the maximum absolute distance between the vectors ~X(t) and ~X(t−T ′),
and ~X(t) and ~X(t − 2T ′) was within ten times the absolute tolerance of the integrator. If the
previous condition was true, the period was recorded, and the replicate would be associated with
a cyclic attractor.

The numerical integration was terminated whenever an attractor was detected. If no attrac-
tor was detected, the integration was finished at tf = 2000, and the replicate was associated
with transient dynamics. After the simulation of all 50 000 replicates, we investigated transient
attractors further, as indicated in section 4.2.1. We tested the detection of attractors by using
parametrizations with known dynamics reported in the literature as described in the appendix
A. We also plotted the temporal evolution of several simulations and investigated the attractor
detection accuracy by visual inspection (see the appendix A).

Numerical errors occurred for some replicates. When this was the case, we drew a distinct
random seed and repeated the simulation. That is, the replicate was changed, but the experiment
was maintained.

4.2.1 Asymptotic Dynamics detected as function of Computational Ef-
fort

After the initial simulation of all replicates, a portion of these replicates could have been associ-
ated with "transient" attractors, i.e., no equilibrium, cycle, or unbounded dynamics was detected.
To further study these replicates, we simulated the communities again, adjusting the numerical
tolerances of the integrator. We diminished the numerical tolerances, with absolute and relative
tolerances being 1× 10−9 and 1× 10−8, respectively. Additionally, we increased the temporal
range of the simulation by setting tf = 6000. We also placed a relatively less restrictive condition
on the detection of cycles by requiring the population densities to be separated by one and two
periods to be equal within 50 times the prescribed tolerances.

For instance, in our simulations, a total of 225 replicates were initially associated with "tran-
sient" attractors. Following the more precise numerical integration, we found that 11 of the 225
replicates were associated with cycles. In accordance, 16 replicates were associated with equi-
librium points, and 69 displayed unbounded dynamics. This information is represented in figure
4.4.

There could be replicates still being classified as possessing transient dynamics after simulating
such replicates with improved numerical precision. We performed a further reanalysis by drawing
new random seeds and effectively substituting these replicates to remove these transients. In this
final step, whenever a simulation resulted in transient dynamics, we drew another random seed
and repeated the simulation with this updated replicate.

In our simulations, a total of 129 scenarios remained unspecified after the simulation with
improved numerical precision. After new seeds were introduced, three additional replicates were
associated with cyclic attractors, totalizing 14 cyclic scenarios. Another 30 replicates were asso-
ciated with equilibrium points, with a total of 46 replicates. Unbounded dynamics were detected
in 165 scenarios overall, representing an increase of 96 scenarios. The distribution of attractors
detected at each stage is pictured in figure 4.4. The final distribution of attractors is presented in
the results section 5.3.

4.2.2 Final Community

We considered that the populations which reached less than a millionth of its carrying capacity
were virtually extinct, i.e., whenever Xi < 1× 10−6 we considered the i-th population to be ex-
tinct. To construct the final community, we removed all virtually extinct populations and their
connections from the initial community network. As the removal of nodes and edges could result
in a disconnected graph, we then considered the largest connected subgraph to be the final com-
munity. This procedure is in accordance with the definition of a community as a set of interacting
populations in an ecosystem (see section 2.3.2). All topological measures from the final network
were based on this largest connected subgraph. Other measures, however, were based on all nodes,
connected or not. For instance, the proportion of survival was taken by dividing the number of
populations with final densities larger than 1× 10−6 by the number of initial populations (400 in
our simulations).
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Figure 4.4: Investigation of Transient Dynamics: The removal of transient dynamics was
made in two stages. First, the temporal evolution was extended and numerical precision was
increased to allow for convergence ("Improved" column). Second, the remaining transient dynamics
were allowed to get a new random seed, which slightly changed the experiment replicates ("New
Seeds" column). For both "Improved" and "New Seeds" updated simulations, 20% of the scenarios
corresponded to equilibrium points, near 74% corresponded to unbounded dynamics, and 6% and
2% respectively were detected to be cycle dynamics.

4.3 Measurements

Aiming at characterizing the ecological communities, we measured different aspects of the com-
munity. The measures were taken from the initial, putative, community or the final, extant,
community. Some measures were based both on the initial and final communities, as it is the case
of topological properties. We divide the measures into three categories, corresponding to which
aspect of the ecological community they represent: Topology, Interaction, and Dynamics. The
measures are discussed in more detail in the following. A complete list of names, symbols and
meanings of the variables is presented in table B.1

4.3.1 Topological Properties

The topological variables measured were average shortest path length (lG), degree assortativity
(rD), density (D), diameter (d), global clustering (C), average local clustering (C), number of
modules, modularity (Q), order (N) and size (E). All these variables were calculated using al-
gorithms provided by the networkx and networkit Python packages (Hagberg, Schult, and Swart
2008; Staudt, Sazonovs, and Meyerhenke 2016). The definitions of these variables are presented
and discussed in the network background section (2.1). All topological variables are measured for
undirected networks in which two nodes (populations) are connected if and only if there exists an
ecological interaction between them.

The input variables related to these measurements were the density and the particular random
graph algorithm used to construct the networks.

4.3.2 Interaction Properties

We characterized the communities’ interaction properties by measuring the mean and variance of
the set {aij}. Additionally, we measured the correlation of the coefficients indicating the influence
of species j upon species i and species i upon species j, i.e., aij and aji.

The input variable most related to the interaction was the standard deviation associated with
the interaction intensities’ normal distributions.

66



4.3.3 Dynamical Properties
The most fundamental aspect of the dynamics is to characterize the type of dynamics, or attractors,
of each simulated community. Depending on the attractor, other dynamical variables are then
measured.

In particular, we recorded the proportion of survival (% surv.), the populations’ abundances at
the end, and the abundance assortativity in the final community for communities associated with
cyclic (CY) and equilibrium attractors (EP). Additionally, we recorded the number of subcommu-
nities (n. comm.) at the end, i.e., the number of connected components after removing virtually
extinct populations from the network. We also recorded the average amplitude of oscillation and
period (T ) for communities with cyclic attractors. Exclusively for communities with equilibria, we
recorded the eigenvalues at the final time-step ({λi}) and the real part of the rightmost eigenvalue
(λmax). Finally, we recorded the final time for all attractors (tf ) and individually for communities
at equilibrium (EP tf ). The complete list of dynamical variables measured is presented on table
4.2.

Measurement Abbreviation/Symbol Type of Dynamics

Abundance abund. EP, CY
Abundance Assortativity abund. assort. EP, CY,
Average Amplitude ave. amp. CY
Eigenvalues at EP λi EP
Final Time tf EP, CY, , UN
Number of Populations Coexisting N populations EP, CY
Period T CY
Proportion of Survival % surv. EP, CY
Real Part Rightmost Eigenvalue λmax EP
Time to EP EP tf EP

Table 4.2: List of dynamical variables: The type of dynamics for each variable
measured is presented. Equilibrium Point, Cycle and Unbounded dynamics are
denoted by EP, CY and UN, respectively.

4.4 Techniques of Analysis

In this section, the methodology used to analyze the data recovered from the simulations is pre-
sented. We focus our efforts on describing the techniques employed in constructing non-standard
figures and analysis with more detail.

Most data handling was performed through Python’s library pandas (McKinney 2010). Addi-
tional functions from the NumPy library were also used (Harris et al. 2020). All plots were made
using Python’s libraries matplotlib, seaborn, and python-ternary (Hunter 2007; Waskom and team
2020; Harper et al. 2019). Networks were plotted with networkx and matplotlib (Hagberg, Schult,
and Swart 2008; Hunter 2007).

4.4.1 Measures of Variability
We measured variability in the outcome of each experiment through the coefficient of variation.
The coefficient of variation is defined as the ratio between the standard deviation and the mean’s
absolute value for a set of observations. Mathematically, this measure is defined as

CF = σ
/
µ (4.2)

=
√
E[X2]− (E[X])2

/
E[X] (4.3)

This quantity is most suited for variables whose mean is not close to zero, as low values for
the mean could lead to high values of the coefficient without this being related to large standard
deviations. The coefficient of variation is useful as it allows for comparisons of the amount of
variance in different measures.
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4.4.2 Stacked Area Plot
To create a stacked area plot for the types of attractors, we first constructed a kernel density
estimator of each attractor’s occurrence along a continuous axis. This kernel density estimator was
normalized to one, indicating the probability that a randomly selected replicate of a given attractor
would have each value of the continuous variable. For instance, when considering input density
as the continuous variable, the cyclic attractors’ kernel density estimator provided the probability
density function related to the densities of all replicates associated with cyclic attractors.

When all the appropriate kernel densities had been measured, we normalized the values once
more, considering that, at each level of the continuous variable, the estimates of the probability
densities of all attractors must add up to one. After this process, the normalized kernel densities
associated with each attractor could be plotted and provided a reliable estimative of each attractor’s
relative occurrence for a given level of the continuous variable.

4.4.3 Hetmaps
To construct the heatmaps, we defined an aggregation function and then applied this aggregation
function to all replicates whose variables occurred inside a unit area of the heatmap. The aggregated
value was then associated with that area and plotted with a color according to its value. We used
two distinct types of aggregation functions: the proportion of bounded attractors and the median
of the rightmost eigenvalue.

When assessing the proportion of bounded attractors, we counted the number of bounded
scenarios inside a given area of the heatmap. We then divided the number of bounded scenarios
by the number of all scenarios occurring inside that area. This procedure was then repeated for
all areas in the heatmap. When assessing the median of the rightmost eigenvalue, we considered
the rightmost eigenvalue of all replicates that occurred inside a given region of the heatmap and
recorded their median.

Many of the heatmaps were constructed on the ternary diagrams. The principles of constructing
heatmaps on the ternary diagrams are the same as when constructing them on regular square
grids. The only difference is that the ternary diagram’s hexagonal regions require that the process
of filtering which replicates fall into each hexagon to be performed with additional functions.
Therefore, we have developed a filtering function that identifies the linear relationships between
the proportion of cooperation and the proportion of competition of the replicate that defines each
hexagonal region’s borders. Since these six identified lines define the plane’s hexagonal region, we
then filtered all the replicates with a proportion of cooperation and proportion of competition that
fell into the given hexagonal region. Once the aggregated value of each hexagon was obtained, we
plotted the ternary diagram using python-ternary.

4.4.4 Scatter Plots and Regressions
The scatter plots were plotted with the aid of the plotting libraries seaborn and matplotlib (Waskom
and team 2020; Hunter 2007). The trends are automatically calculated and plotted by seaborn, but
in order to display its equation, we recalculated the regressions using the Python library statmodels
(Seabold and Perktold 2010). The same library was also used to calculate all the linear regressions
presented throughout this work.
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Chapter 5

Results

In this chapter, the results of this research are presented. The results are divided in six sections.
The first section (section 5.1) presents summary statistics of the measured variables and the corre-
lations among them. These correlations show that it is possible to reduce the number of variables
analyzed. The second section (section 5.2) addresses the variability present in each experiment,
how much each property varied among replicates in the same experiment and overall. The third
section (section 5.3) show the distribution of attractors in the simulated communities, and its
dependence on input parameters.

Section four (section 5.4) presents our results concerning how coexistence of populations in a
community is related to density, intensity and types of interaction. Lastly, in section five (section
5.5), we discuss the resilience of communities, and how are they related to parameters used to
construct the community.

5.1 Measured Variables Profile

In the following section, we present the statistical profile of the variables measured for each repli-
cate (see section 4.3). We characterize the measurements of each variable by presenting a set of
summary statistics. Specifically, we present the total count, mean, standard deviation, minimum,
maximum, and first through third quartiles. While these values do not fully determine the distri-
bution, they provide valuable insights corresponding to the range, spread, and central tendency
for each variable. Additionally, we perform a correlation clusterization of variables and identify
several groups of highly correlated measured variables. These sets of variables provide redundant
information concerning the structure or dynamics of the simulated ecological networks. Thus, we
choose one representative of each group to study in subsequent analysis.

5.1.1 Descriptive Statistics
In the following, variables are grouped according to the aspect of structure/stability it characterizes.
Therefore, we present the descriptive properties of variables related to dynamics, interaction, and
topology. Several of these variables are measured once for the initial network and then for the final
network. In such cases, the variable name is suffixed by 0 or f , indicating a measure performed
for the initial or final network, respectively.

The results put forward in this section provide an initial overview of the data gathered from
numerical simulations and serve as preparation for more complex analysis.

Dynamical Properties/Variables The dynamical properties entail information concerning
densities, state space dynamics, number of populations, and connected components of the net-
works. In particular, these variables provide information concerning communities’ resilience and
coexistence through the rightmost eigenvalue and number of surviving populations.

In table 5.1 we present the summary statistics for abundance assortativity (abun. assort.),
average amplitude (ave. amp.), the number of populations in the final community (N populations),
and the proportion of population survival ( % surv.).
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abun. assort. ave. amp. N populations % surv.

n 288 19 288 288
mean 0.11 8.19 134.9 33.74
std 0.15 14.75 83.30 20.82
min −0.12 1.13 13 3.25
25% 6.2× 10−3 3.48 51 12.75
50% 0.07 4.65 148 37
75% 0.19 5.79 175 43.75
max 0.81 68.31 295 73.75

Table 5.1: The descriptive statistics of dynamical variables (I): We present
the number of observations (n), mean, standard deviation (std), minimum and
maximum values (min, max) and the 25%, 50% and 75% quartiles that characterize
the distribution of the abundance assortativity, average amplitude, number of extant
populations and proportion of survival. The 50% quartile is also referred to as the
median of the data.

The number of observations of each variable allows us to conclude that from the 50 000 scenarios
considered, only 288 did not lead to unbounded dynamics. Therefore, almost all sets of input
variables led to the unbounded growth of at least one population 4.2. By analogous reasoning,
equilibrium point and cyclic attractors were observed in 269 and 19 scenarios, respectively.

It is possible to see that most bounded scenarios had weakly assortative abundance distribution
across nodes as indicated by the mean and 50%, and 75% percentiles. Nevertheless, the standard
deviation and distance between median and mean indicate high variance and the presence of
assortative outliers. Similarly, the average amplitude of the detected cycles had a large standard
deviation compared to its mean value. Average amplitudes were always greater than one, indicating
that the oscillations in populations’ densities were larger than populations’ carrying capacity in all
cases.

The average state space speed is dominated by many small values, as indicated by the quartiles’
relatively low values. However, the maximum and the standard deviation indicate a few large values
that may be outliers. Accordingly, the distance to equilibrium point displays the same pattern,
with many small values and few outliers indicated by maximum, standard deviation, and distance
between mean and the quartiles.

The number of surviving populations indicates that at least 13 and at most 295 populations
coexisted in the final community. In accordance, the proportion of survival indicates that a third of
the total number of populations survive, on average. Overall, 135±83 (mean ± standard deviation)
populations coexisted in the final community.

In the table 5.2, we present summary statistics of the number of weakly connected components
in the initial and final networks ( (0) n comm. / (f) n comm.), the period of cyclic solutions (T ),
initial and final rightmost eigenvalue (λmax0, λmax), final time (tf ), and final time for equilibrium
points (EP tf ).

As a consequence of our methodology, all initial networks had a single connected component.
The quartiles of the number of connected components in the final network also indicate that
most networks comprised a single connected component. Few scenarios displayed some level of
disaggregation and were composed of up to 22 connected components. Therefore, it is possible
to deduce that despite the extinction of an average of two-thirds of interacting populations, the
community generally remained connected. The periods of scenarios with cyclic dynamics ranged
from 1 up to 120 units of time, indicating a large variance on this measure.

The initial rightmost eigenvalue (λmax0) of all communities had positive real components,
indicating that no community would be stable in the absence of intraspecific competition. Only
a small proportion of communities satisfied the condition λmax0 < 1, which would guarantee the
stability of an internal equilibrium point. Upon inspection, it was verified that all the 19 initial
communities satisfying such condition were associated with equilibrium points. Generally, values
of λmax0 occurred in the range [0.9, 196], with mean 24 and standard deviation 27, indicating that
the parametrization typically led to nonresilient communities. Note that the initial eigenvalues are
the eigenvalues of the interaction matrix with intraspecific competition set to zero, i.e., A + I.
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(0) n comm. (f) n comm. T λmax0 λmax tf EP tf

n 5.0× 104 288 19 5.0× 104 269 5.0× 104 269
mean 1 1.11 36.29 24.10 0.04 26.18 1219.6
std 0.0 1.28 40.31 27.07 0.13 231.5 1204.2
min 1 1 1.05 0.91 −0.29 0.01 63.86
25% 1 1 10.22 8.26 −7.2× 10−3 0.08 509.6
50% 1 1 16.81 14.94 −1.4× 10−3 0.23 799.0
75% 1 1 44.47 27.44 0.04 1.17 1481.9
max 1 22 122.2 196.0 0.69 5961.2 5961.2

Table 5.2: The descriptive statistics of dynamical variables (II):We present
the number of observations (n), mean, standard deviation (std), minimum and
maximum values (min, max) and the 25%, 50% and 75% quartiles that characterize
the distribution of the number of communities in the initial and final networks
(n. comm.), the period (T ), real part of the rightmost eigenvalue of the initial
community (λmax0), rightmost eigenvalue at the equilibrium point (λmax), final
time (tf ) and time at the detection of equilibrium points (EP tf ). The 50% quartile
is also referred to as the median of the data.

However, after communities’ temporal evolution, the distribution of rightmost eigenvalues
changed. Most final rightmost eigenvalues were close to zero, as indicated by the mean and quar-
tiles. The 75% quartile indicates that some communities with equilibrium points were associated
with positive, albeit small, values of λmax. The final eigenvalues are calculated for the Jacobian
matrix evaluated at the final densities.

The final time of most scenarios was considerably small, with the 75% percentile of the data
being less than 2 units of time. On the other hand, when considering only equilibrium points final
times, more than 50% of scenarios presented final times in the range of 500 to 1500.

Interaction Variables Interaction variables convey much of the information concerning the
intensity, distribution, and types of ecological interactions among populations. The summary
statistics of the mean, variance, and correlation of ecological interaction coefficients are presented
in table 5.3.

aij mean (µ) aij variance aij correlation

n 5.0× 104 5.0× 104 5.0× 104

mean 4.6× 10−3 0.40 0.20
std 0.12 0.39 0.30
min −0.54 2.5× 10−3 −0.60
25% −0.04 0.09 −6.3× 10−3

50% 1.5× 10−3 0.26 0.23
75% 0.05 0.61 0.46
max 0.49 1.96 1

Table 5.3: The descriptive statistics of interaction variables: We present
the number of observations (n), mean, standard deviation (std), minimum and
maximum values (min, max) and the 25%, 50% and 75% quartiles that characterize
the distribution of the interactions mean value (aij mean), variance (aij variance)
and correlation (aij correlation). The 50% quartile is also referred to as the median
of the data.

The mean of interaction coefficients in each community was distributed roughly symmetrically
around zero. Therefore, half of the simulated scenarios had interaction coefficients with positive
mean, and the other half was associated with negative mean. The interaction coefficients variance
covered a range of values between 1× 10−3 to 2, with mean 0.4. The correlation among coeffi-
cients in a community was, on average, slightly positive. Nevertheless, anticorrelated and highly
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correlated distributions of interaction coefficients were registered, ranging from −0.6 to 1.

Topology Variables The measured topological variables characterize the network structure of
putative and final communities. In table 5.4, summary statistics for initial and final average
minimum path length (lG) and degree assortativity (rD) are presented.

lG0 lGf rD0 rDf

n 5.0× 104 288 4.0× 104 288
mean 1.98 2.90 −1.9× 10−3 0.28
std 0.67 1.58 7.9× 10−3 0.29
min 1.50 1.55 −0.05 −0.27
25% 1.63 1.85 −6.4× 10−3 5.1× 10−3

50% 1.78 2.37 −2.6× 10−3 0.26
75% 2.05 3.11 1.9× 10−3 0.55
max 10.04 9.23 0.07 0.81

Table 5.4: The descriptive statistics of topological variable (I)s: We present
the number of observations (n), mean, standard deviation (std), minimum and
maximum values (min, max) and the 25%, 50% and 75% quartiles that characterize
the distribution of the average minimum path length (lG) and degree assortativity
(rD). The measures taken from the initial network are indicated by a 0 subscript,
while the measures taken from the final network are indicated by a f subscript. The
50% quartile is also referred to as the median of the data.

The initial networks typically had a small average shortest path length with mean and median
below 2, despite the relatively broad range (1.5 to 10). The average shortest path length was higher
in the final community, with a mean close to 3. This increase in path lengths occurs independently
of the reduced number of nodes in the final network compared to the initial network. The final
network also present increased standard deviations in comparison with its initial counterpart.
Importantly, the average shortest path length was always defined since all networks were connected.

Initial networks were consistently disassortative, as indicated by minimum and maximum values
close to zero. In opposition, final networks were, on average, assortative - albeit with coefficients
close to zero. Overall, these networks had a broad range of assortativity values, ranging from
disassortative to highly assortative (−0.27 to 0.81).

The table 5.5 displays descriptives for initial and final density (D), diameter (d), and global
clustering (C).

D0 Df d0 df C0 Cf

n 5.0× 104 288 5.0× 104 288 5.0× 104 288
mean 0.27 0.18 3.06 5.48 0.52 0.50
std 0.13 0.12 1.66 3.74 0.22 0.26
min 0.05 0.05 2 2 0.04 0.04
25% 0.16 0.06 2 3 0.33 0.24
50% 0.28 0.14 3 4 0.58 0.56
75% 0.39 0.23 3 6 0.73 0.72
max 0.50 0.47 20 19 0.75 0.85

Table 5.5: The descriptive statistics of topological variables (II):We present
the number of observations (n), mean, standard deviation (std), minimum and
maximum values (min, max) and the 25%, 50% and 75% quartiles that characterize
the distribution of the density (D), diameter (d) and global clustering (C). The
measures taken from the initial network are indicated by a 0 subscript, while the
measures taken from the final network are indicated by a f subscript. The 50%
quartile is also referred to as the median of the data.
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The density of initial communities reflects the uniform distribution of input densities from 0.05
to 0.5. However, the final densities of final communities were lower, as indicated by the quartiles
and mean. Mean and standard deviations of diameter for final graphs were also higher than initial
ones. This increase in diameter occurs independently of the decrease in the order and size of the
final network. On the other hand, the distribution of global clustering was roughly similar across
initial and final networks. On average, the networks had a clustering coefficient around 0.5 and
ranging from 0.2 to 0.8.

Next, the summary statistics for initial and final local clustering (C̄), modularity (Q), and the
number of modules (n modul.) are presented in table 5.6.

C̄0 C̄f Q0 Qf (0) n modul. (f) n modul.

n 5.0× 104 288 5.0× 104 288 5.0× 104 288
mean 0.52 0.51 0.29 0.45 4.89 5.09
std 0.22 0.26 0.20 0.20 2.38 2.12
min 0.04 0.02 0.04 0.09 2 2
25% 0.33 0.23 0.08 0.21 3 3
50% 0.58 0.58 0.32 0.49 3 4
75% 0.73 0.72 0.46 0.62 7 7
max 0.75 0.87 0.76 0.81 13 12

Table 5.6: The descriptive statistics of topological variables (III): We
present the number of observations (n), mean, standard deviation (std), minimum
and maximum values (min, max) and the 25%, 50% and 75% quartiles that char-
acterize the distribution of the average local clustering coefficient (C̄), modularity
(Q), and number of modules in the network. The measures taken from the initial
network are indicated by a 0 subscript, while the measures taken from the final
network are indicated by a f subscript. The 50% quartile is also referred to as the
median of the data.

Despite having different definitions, the global average of local clustering and global clustering
had very similar distributions both in initial and final networks. In contrast, the modularity was
higher for final communities than for initial ones. On average, typical values for the modularity of
initial and final networks were Q0 ≈ 0.2±0.2, and Qf ≈ 0.45. Despite the difference in modularity,
the number of modules was similar between the two groups. Both initial and final networks had
around 5 modules on average.

Lastly, table 5.7 contains summary statistics for the number of nodes (N) and edges (E).

N0 Nf E0 Ef

n 5.0× 104 288 5.0× 104 288
mean 400 134.8 2.2× 104 1211.9
std 0.0 83.44 1.0× 104 917.8
min 400 13 4000 26
25% 400 51 1.3× 104 267.2
50% 400 148 2.2× 104 1063
75% 400 175 3.1× 104 2182.8
max 400 295 4.0× 104 3345

Table 5.7: The descriptive statistics of topological variables (IV): We
present the number of observations (n), mean, standard deviation (std), minimum
and maximum values (min, max) and the 25%, 50% and 75% quartiles that char-
acterize the distribution of the number of nodes(N) and edges (E). The measures
taken from the initial network are indicated by a 0 subscript, while the measures
taken from the final network are indicated by a f subscript. The 50% quartile is
also referred to as the median of the data.

73



As expected by the employed methodology, the number of nodes and edges decreased when com-
paring initial and final networks. Initial communities always had the same number of populations
(400) as indicated by N0. Initial number of edges followed the input distribution of densities, thus
being fairly uniform between N0×(N0−1)×d0min/2 ≈ 4000 and N0×(N0−1)×d0max/2 ≈ 40 000.
The number of edges in the final network is much smaller than the number of edges in the initial
network. While most initial networks had more than 2× 104 edges, final networks have less than
4× 103 in all cases. This reduction decreases the number of edges by at least one order of magni-
tude. It is relevant to note that number of nodes in the final graph is always equal or larger than
the number of populations in the final community.

5.1.2 Correlations
The study of correlations among variables contributes to the overall analysis in different ways.
It is possible to use correlations as an indication of results that should be further investigated.
Also, since highly correlated variables convey similar information, we reduce the parameters to be
analyzed by avoiding redundancy on the investigated variables. In itself, the correlation provides
valuable insight on the interplay of multiple variables, albeit correlation does not imply causation.

The correlations among all variables are presented in figure B.1. From all the correlations, we
highlight several sets of variables that presented large Pearson correlation (ρ) values with each
other. The list of all highly correlated variables, ρ > 0.95 is

• Final time (tf ) and final time for equilibrium point attractors (EP tf ) [ ρ = 1.];

• Average state space speed (ave. SS-speed) and distance to equilibrium point (EP dist.)
[ρ = 1.];

• Initial/final global clustering (C) initial/final average local clustering (C̄) [ρ ≥ 0.99 for all
pairs];

• Initial average shortest path (lG0) and initial diameter (d0) [ρ = 0.96];

• Final average shortest path (lGf ) and final diameter (df ) [ρ = 0.98];

• Number of populations in the final community (N populations) and proportion of survival
(% surv.) [ρ = 1.0];

• Initial density/final density (D0 / Df ), input density(Din) and initial number of edges
(E0) [ρ > 0.98 for all pairs].

To avoid the repetition of analysis, we conduct further analysis solely the variable highlighted
in bold for each set. Additionally, strong negative correlation between the period and initial degree
assortativity (ρ = −0.83) and strong positive correlation between initial and final average shortest
path length (ρ = 0.88) were detected.

5.2 Variability in Experiments

5.2.1 Variability of Measured Quantities
For each unique set of input parameters, the community simulation was repeated ten times, with
different random seeds (see section 4.1.4). Since the initial networks are randomly generated, the
output from each seed is unique. Therefore, we computed the coefficient of variation (CV) to
address how similar the networks generated with the same set of input parameters were. The CV
is the ratio of the standard deviation to the mean. Since this measure is normalized, it is possible
to compare its values for different data distributions: Smaller values indicate less variance around
the mean, and larger values are associated with increased variance. The coefficients of variation
calculated for each unique experiment individually are shown in figure 5.1. For reference, we also
present the CV calculated across all generated networks.

In general, the coefficient of variation calculated for each experiment’s replicates was almost
one order of magnitude smaller than its counterpart calculated for the entire dataset. Some few
exceptions to this rule were measures related to assortativity, the real part of the rightmost eigen-
value, and the average state space speed. However, as indicated in the previous section (5.1.1),
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these measures’ means were generally very close to zero, which hinders the interpretation of the
coefficient of variation. As a reference, observe that the seed displayed a global and experiment-
based coefficient of variation close to one (100). Indeed, since the seed is sourced from a random
number generator, its distribution is independent of the experiment.

Most of the measured variables had coefficients of variation around or below 10% (dotted white
line). Therefore, despite the variability inherent to the employed methodology, measures taken on
distinct replicates of the same experiment were relatively similar.
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Figure 5.1: Global and Experiment variability: The experiments are composed of a unique
set of input parameters. Each experiment has ten replicates, each performed with different seeds
(see section 4.1.4). The normalized coefficient of variation (CV) was calculated by dividing the
standard deviation by the mean, calculated over the same data. We computed the CV across the
ten replicates of each experiment to account for variability in each experiment (colored circles) and
across the whole dataset (x marker). For each measure, we calculated the mean of all the CVs
determined over the replicates of each experiment. This mean is represented by grey diamond and
the whiskers indicate the 95% confidence interval for the mean, obtained through bootstrapping.
Note that smaller values indicate less variance around the mean, and larger values are associated
with increased variance. In general, the CV calculated within experiments was almost one order
of magnitude smaller than the CV calculated for the entire dataset. The colors indicate variable
types. The list of variables’ names and symbols used in the y axis is presented in table B.1.
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5.2.2 Variability in Asymptotic Dynamics

Apart from presenting potentially distinct values for the measured variables, replicates can also
display distinct dynamics. To study the variability of attractors in each experiment, we aggre-
gated the detected attractors by experiment. Since almost all simulated communities displayed
unbounded dynamics, we focus on the variability of bounded attractors. Figure 5.2 display the
distribution of experiments with respect to the proportion of bounded scenarios. For convenience,
experiments with no bounded scenarios were suppressed.
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Figure 5.2: Variability of dynamics type within replicates: To observe the variability
between cycles and equilibrium dynamics, unbounded scenarios were omitted. The proportion of
replicates with bounded dynamics was calculated within the ten replicates of each experiment. The
number of experiments with a given proportion of bounded dynamics was estimated. The majority
of experiments presented bounded dynamics in only 1 out of the 10 replicates. Cycle dynamics
were only detected in experiments in which bounded attractors were detected less than 5 out of 10
times. Equilibrium dynamics were present in experiments displaying any proportions of bounded
dynamics among replicates. Nevertheless, experiments displaying more bounded than unbounded
scenarios were the exception.

The variability in the type of dynamics displayed in an experiment’s replicates is directly related
to the proportion of bounded attractors. Experiments with 100% of bounded attractors showed no
variability, and all replicates were similar. On the other hand, experiments with 10% of bounded
attractors showed a bounded attractor in only 1 out of 10 replicates.

In our simulations, most experiments with bounded attractors detected them in just one out
of ten replicates. The result is similar for experiments that detected cyclic dynamics or equilib-
rium points. However, cycles were not detected in experiments with more than 40% of bounded
replicates, possibly due to their rarity. Some experiments presented a large proportion of bounded
communities, with six experiments detecting equilibria in all replicates. Irrespective of a few ex-
periments with a majority of bounded attractors, unbounded attractors were most common even
for experiments that detected bounded replicates.

In the following analysis, each replicate is considered on its own, and experiments are not
aggregated. With this procedure, the variability in measures and the detection of attractors is
preserved.

5.3 Distribution of Asymptotic Dynamics

The asymptotic dynamics displayed by random putative communities represents a crucial aspect of
community dynamics. As indicated in section 3.1.4, an ecological community whose dynamics can
be correctly described by the gLV model can display many different asymptotic behaviors. From a
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state space standpoint, these asymptotic dynamics represent an invariant set of points (see section
2.1.3).

In the following, we present the distribution of attractors found in the computational sim-
ulations. Note that the distribution displayed was obtained after all replicates with transient
attractors were reanalyzed or reseeded (see section 4.2.1).

5.3.1 Overall

As mentioned in section 5.1.1, most considered replicates led to unbounded dynamics. The un-
bounded dynamics is characterized by the presence of one or more populations that grow expo-
nentially in density and crosses the barrier of a million times its carrying capacity (Xj > 106Kj

for some j). In the performed experiments, this dynamics was found in 99.4 % of simulated
communities.

The number of occurrences of each attractor is presented in figure 5.3. Apart from the evident
dominance of unbounded dynamics, it is also possible to see that most bounded communities
achieved an equilibrium point. Equilibria were detected in 269 replicates in total, which represent
0.54% of the total amount of simulations and 93.4% of simulations with bounded attractors. Cycles
were detected in 19 communities, which represented 6.6% of bounded communities and 0.038% of
all simulated communities.
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Figure 5.3: Occurrences of each attractor in the computational experiments: Most
replicates considered led to unbounded dynamics. The equilibrium attractor is more observed
than cycles in bounded dynamics. The logarithmic scale on the y-axis highlights the very uneven
distribution of types of attractors.

5.3.2 Distribution of Attractors Across Density and Intensity of Inter-
actions

The type of asymptotic dynamics associated with each scenario depended on input parameters.
Figure 5.4 indicates how the proportion of asymptotic dynamics types varied with the density.

Note that in figure 5.4, the y-axis is log-transformed to allow for the visualization of the
proportions of all three types of dynamics. Therefore, it does not follow that the area or height
of different colors is proportional to the number of scenarios associated with a given attractor.
As an example, for Din = 0.1, the height of the color associated with cyclic dynamics is roughly
equal to the color representing equilibria. However, equilibria are ten times more likely than cyclic
dynamics in this region.

The proportion of equilibria dynamics varied with the input density. Equilibria represented
around 1% of scenarios for small values of density and around 0.1% of scenarios for intermediate
density levels. Overall, bounded attractors represented at most 1% of the scenarios for any input
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Figure 5.4: Distribution of Types of Dynamics across differences in Network Density:
The proportion of scenarios detecting cycles, equilibria or unbounded dynamics is depicted in green,
orange and beige, respectively. The input density of interactions of the network is measured as
the ratio of the number of pairwise interactions in the network divided by the maximum number
of pairwise interactions that could occur with the same number of populations. Each simulation
(observation) is depicted as an individual tick in the x-axis and the large amount of simulations hin-
der identification of individual ticks. For all densities, unbounded scenarios are majorly observed,
although equilibrium dynamics are present for all densities. Cycle dynamics are only observed for
densities lower than 0.3. Note that the proportion of dynamics type is log-transformed.

density value. Cyclic attractors were only detected for small values of density and did not represent
more than 1 in every 1000 scenarios.

Considering other measurements, figure 5.5 indicates how the proportion of asymptotic dynam-
ics types varied with the interaction intensity. Interaction intensity had a very pronounced effect
upon the distribution of attractors. All bounded scenarios occurred for relatively small values
of the standard deviation of the intensity distribution. Indeed, only one community presented
equilibrium for σin > 1. Conversely, bounded attractors occurred in up to 10% of the replicates
for communities with weaker interactions (σin ≈ 0.2). Cyclic attractors were also concentrated
for small values of σin, representing more than 0.1% of replicates for some range of the intensity
parameter.

To consider how bounded attractors are distributed across both density and intensity of inter-
actions, we plotted a heatmap (figure 5.6). The effect of the intensity of interactions was more
pronounced than the effect of the density of interactions as it was possible to observe bounded inter-
actions only for small intensities standard deviation. A combination of small intensity and density
was optimal for bounded attractors, since ecological communities presented bounded dynamics in
more than one out of every five replicates in this situation.

5.3.3 Dependence of Attractors on Interaction Types

The distribution of attractors was also related to the distribution of interaction types. In figure
5.7, the proportion of bounded attractors for different combinations of interaction density and
types is shown. Overall, bounded attractors were more frequent in regions with lower proportions
of cooperative interactions (figure 5.7-A). Accordingly, only ten replicates with more than 25% of
interactions being cooperative displayed bounded attractors.

For small proportions of cooperative interactions, the distribution of attractors does not clearly
depend on the percentage of exploitative or cooperative interactions. Nevertheless, when consider-
ing communities with intermediate or large density values,bounded attractors were only registered
for simulations with more than 70% of interactions being competitive (figures 5.7-C and 5.7-D).
Bounded attractors were also much more common in more competitive communities when only
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Figure 5.5: Distribution of Types of Dynamics across differences in Interaction Inten-
sity: The proportion of scenarios detecting cycles, equilibria or unbounded dynamics is depicted
in green, orange and beige, respectively. The standard deviation indicates the distribution of
interaction intensity; larger standard deviation values indicate a higher proportion of strong in-
teractions. Each simulation (observation) is depicted as an individual tick in the x-axis and the
large amount of simulations hinder identification of individual ticks. The interaction intensity
had a pronounced effect upon attractors’ distribution, where bounded dynamics occurred only for
relatively small values of standard deviation.

communities with a weak standard deviation of interactions are taken into account (figure B.2-B).

5.3.4 Interaction Topology and Asymptotic Dynamics

The proportion of attractors as a function of input density for each considered topology is shown in
figure 5.8. The distribution of bounded and unbounded attractors was roughly similar for all con-
sidered topologies. The maximum proportion bounded attractors of roughly 1% of replicates was
attained for small densities (Din ≈ 0.05) for all topologies considered. For networks following the
Watts-Strogatz topology, the minimum proportion of bounded attractors decreased with increasing
probability of reconnection p. Indeed, the topologies constructed with p = 1× 10−3 consistently
had a larger proportion of bounded scenarios than the ones constructed with p = 1× 10−1 or
p = 1× 10−2 for the same input density.

The number of cyclic attractors detected was negatively related to the reconnection probability
in Watts-Strogatz (WS) topology. Most cyclic attractors were detected for the Watts-Strogatz
topology with reconnection probability p = 1× 10−3, WS0.001, which registered nine cycles. The
networks constructed with reconnection probabilities equal to 1× 10−2 (WS0.01) and 1× 10−1

(WS0.1) were associated with four and one cyclic scenarios, respectively. The networks constructed
with random (ER) topology registered three cyclic scenarios, while networks constructed with
random-regular (RG) topology registered two.

The number of detected equilibrium points also differed among topologies. Once again, the
topology WS0.001 was associated with the largest number of detected equilibria (68). The topology
WS0.1 registered 57 replicates with equilibrium points. Both the topologies WS0.01 and ER
registered 51 equilibrium points. The random-regular topology was associated with the smallest
number of equilibria in total (42).

Since some measures are only defined for bounded attractors, some analysis do not cover the
entire parameter space evenly. There is an under-representation of scenarios with more cooperation,
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Figure 5.6: Relationship between Interaction Intensity and Density on the proportion
of bounded scenarios: The proportion of scenarios displaying bounded dynamics is presented in
a heatmap. Brighter colors indicate a larger proportion of bounded scenarios. Scenarios displaying
equilibria or cyclic dynamics are classified as bounded. The input density of interactions of the
network is measured as the ratio of the number of pairwise interactions in the network divided by the
maximum number of pairwise interactions that could occur with the same number of populations.
The standard deviation indicates the distribution of interaction intensity; larger standard deviation
values indicate a higher proportion of strong interactions. The intensity of interactions was more
limiting to the appearance of bounded scenarios than the density of interactions. A combination
of small interaction intensity and density was optimal for bounded attractors.

larger densities, or more intense interactions’ coefficients among scenarios with bounded dynamics.

5.4 Effects of Structure on Coexistence of Populations

5.4.1 Relation between Coexistence and Interaction Types

The proportion of surviving populations exhibited a strong dependence on the types of interaction
in the community. The proportion of competition was strongly negatively correlated with the pro-
portion of surviving populations (figure B.1). Figure 5.9 displays a scatter plot of the proportion
of survival (y-axis) and proportion of competition (x-axis). A linear regression between propor-
tion of survival and proportion of competitive interactions indicated 68% of expected decrease in
coexistence when the community shifted from 0 to 100% of competitive interactions (figure 5.9-A,
black dashed line; Angular coefficient a = −0.68, 95% CI [−0.73,−0.63] ). The line intercept
indicated an expected survival of 70% strictly non-competitive communities (intercept b = 0.70,
95% CI [0.67, 0.73] ). Interestingly, the proportion of survival for entirely competitive communities
was close to zero for the simulation data. The linear regression between proportion of survival and
competition was a good fit of the data (R2 = 0.72; p ≈ 3× 10−80; AIC for linear regression: −438;
AIC for just the intercept: −77).

The decrease in the proportion of survival with increasing competition was similar for all
topologies (figure 5.9-A, colored lines). However, the linear regression for the subset of communities
with cyclic attractors was associated with a shallower slope (figure 5.9-B, brown line; angular
coefficient a = −0.68, 95% CI [−0.73,−0.63]).

Apart from the negative relationship with the proportion of competition, the proportion of
survival positively depended on the proportion of exploitation (figure B.3 and model parameters
in supplementary table B.2). On the other hand, the effect of cooperation upon the proportion
of survival was unclear (figure B.4 and model parameters in supplementary table B.2). It is
possible to represent the relationship between coexistence and type of interaction without focusing
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Figure 5.7: The proportion of scenarios displaying bounded dynamics distributed
across interaction type and intensity: The proportion of scenarios displaying bounded dy-
namics is presented in a ternary heatmap. Brighter colors indicate a larger proportion of bounded
scenarios. This proportion was measured by dividing the number of scenarios displaying bounded
dynamics (equilibrium points and cycles) by the total number of scenarios inside each hexagonal
grid cell. Regions in which no scenario was simulated are colored black. The input density of
interactions of the network is measured as the ratio of the number of pairwise interactions in the
network divided by the maximum number of pairwise interactions that could occur with the same
number of populations. The vast regions colored purple are related to the fact that 98.97 % of the
simulated scenarios were unbounded. (A) Overall, most of the bounded scenarios were found for
a small portion of cooperation and varying amounts of asymmetric and competitive interactions,
with a larger proportion of competitive interactions related to more bounded scenarios. (B) The
largest proportion of bounded dynamics was found for scenarios with few cooperative interactions
(< 25%) and less intense coefficients (0.2 ≤ σ ≤ 0.8). (C) and (D) For moderate and intense
interaction’s coefficients, only one bounded scenario was found.

on a particular type of interaction through a heatmap overlaid on a ternary plot of the types of
interaction (see supplementary figure B.5).

5.4.2 Relation between Coexistence and Density of Interactions

In our simulations, there is a negative correlation between the proportion of survival and input
communities densities. This dependence is depicted in figure 5.10, which shows a typical decrease
of roughly 60% in the proportion of surviving populations as density increases from 5% to 50%.
Similarly to the dependence of the proportion of survival with input competition, there was no
clear difference in the signal between topologies. The communities with cyclic and equilibrium
attractors also showed a similar decrease in the proportion of survival with increasing density. All
information on linear regressions constructed for the data can be found in the supplementary table
B.2.

Even though all scenarios were generated with uncorrelated input parameters, the data dis-
played a strong correlation between input density and proportion of competition when considering
only communities with bounded dynamics (see supplementary figure B.6). The coexistence did
not depend strongly on the intensity of interactions (see supplementary figure B.7 and table B.2).
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Figure 5.8: The effect of Density on Distribution of Attractors accross different Net-
work Topologies The density indicates how heavily taxa are connected in a given network. The
number of cyclic attractors detected was negatively related to the reconnection probability (p) in
Watts-Strogatz (WS) topology: when p = 0.1, only one cycle dynamics is observed. Similarly, the
random-regular (RG) topology registered only two cycle dynamics. The number of equilibrium
points detected also differed among topologies. For p = 0.001, the topology WS was associated
with the largest number of equilibria dynamics detected (68).

5.4.3 Relation between Coexistence and Topologies

In accordance with the result that regressions between the proportion of survival and interaction
parameters, the distributions of the proportion of survival were similar across topologies 5.11. The
topologies resembled each other in the violin plot overlaid with a swarm plot identifying individual
values.

5.5 Resilience of Communities

5.5.1 Resilience and Density of Interactions

In our simulations, the resilience tended to decrease with the increasing density of interactions.
The rightmost eigenvalue increased with input density across all topologies, as depicted in figure
5.12-A. This trend was also consistent between unbounded and equilibrium types of attractors,
although regressions performed for these subsets of data presented different values for coefficients
(figure 5.12-B, parameters reported in the supplementary table B.3). Linear regression for the
whole data indicates that if input density increases by 0.1, the rightmost eigenvalue increases by 7,
on average. If the same regression is performed by considering only communities with equilibrium
points, the rightmost eigenvalue is expected to increase by 20. On the other hand, data on cycles
do not support a strong influence of density upon the rightmost eigenvalue.

The data presented a large spread as highlighted by the small coefficients of determination,
with r2 ≈ 0.12 for all regressions except the one based on the subset of data exhibiting equilibrium
point attractors (r2 = 0.27) and cycles (r2 ≈ 0). Remarkably, the rightmost eigenvalue distribution
presented an upper bound, which seemed to depend linearly on the input density. The parameters
of all linear regressions addressed are available in supplementary table B.3.

83



0% 20% 40% 60% 80% 100%

Competition (% −/−)

0%

20%

40%

60%

C
o

ex
is

te
nc

e
(%

su
rv

iv
al

)
A

y = −0.7x+ 0.7

0% 20% 40% 60% 80% 100%

Competition (% −/−)

B

y = −0.5x+ 0.5

y = −0.7x+ 0.7

Topologies

ER

RG

WS0.001

WS0.01

WS0.1

Attractors

Equilibrium

Cycle

Figure 5.9: More competition results in a lower percentage of surviving populations:
The percentage of survivors is calculated as the number of nodes in the final network divided by the
number of nodes in the initial network. he percentage of survivors in the final network is affected
by the proportion of competition in the initial network, where more competition results in a lower
percentage of surviving populations. (A) A comparable result was found for all topologies, as it
is possible to see the similarity between colored full lines and black dashed line. The black line
intercept and angular coefficient were calculated as the mean of these parameters for the colored
lines. (B) Equilibria and cyclic dynamics were associated with distinct trends in reducing the
percentage of surviving populations. Equilibria scenarios had a more steep decrease in the per-
centage of survivors with increasing competition, as indicated by the angular coefficient. However,
scenarios with cycles had a larger decrease in the percentage of survivors for the no competition
best-case scenario as revealed by the lower intercept.
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Figure 5.10: Highly connected networks result in a lower percentage of surviving pop-
ulations: The percentage of survivors is estimated by the number of nodes in the final network
divided by the number of nodes in the initial network. The percentage of survivors in the final
network is affected by interaction density in the initial network, where higher densities result in a
lower percentage of surviving populations. The density indicates how heavily taxa are connected
in a given network. (A) A comparable result was found for all topologies, as it is possible to see the
similarity between colored full lines and black dashed line. The black line intercept and angular
coefficient were calculated as the mean of these parameters for the colored lines. (B) Equilibria
and cyclic dynamics were associated with slightly distinct trends in reducing the percentage of
surviving populations. Equilibria scenarios had a slightly steeper decrease in the percentage of
survivors with increasing competition, as indicated by the angular coefficient.
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Figure 5.11: Proportion of surviving populations across topologies The percentage of
survivors is estimated by the number of nodes in the final network divided by the number of nodes
in the initial network. The distributions of the proportion of survival were similar across topologies.
The ’violin’ shape indicates the distribution of values.

5.5.2 Resilience and Intensity of Interactions

In a similar fashion than the density of interactions, the rightmost eigenvalue depended positively
on the standard deviation of interactions intensities (figure 5.13). Despite this overall indication
that the resilience diminished with increasing interactions’ standard deviation, the data displayed
a large variance (r2 = 0.11). The linear regression based on communities with equilibria attractors
showed a negligible coefficient of determination (r2 ≈ 0, p = 0.72). Conversely, the intensity
of interaction explained much of the variance on the rightmost eigenvalue of cycle-related data
(r2 = 0.79, p = 0.04). The different network topologies showed similar results for the resilience vs.
intensity trend.

5.5.3 Resilience and Types of Interaction

Resilience showed a strong dependence on the distribution of types of interaction (figure 5.14).
Communities were more resilient for larger proportions of competitive and exploitative interactions
and less resilient for increasing proportions of cooperative interactions. Indeed, linear regressions
between the rightmost eigenvalue and proportion of competition or exploitation had consistently
negative angular coefficients overall and for each topology considered (−27.4 ≤ a ≤ −24.1). Lin-
ear regressions also indicated the positive correlation between the proportion of cooperation and
rightmost eigenvalue (angular coefficients 52.3 ≤ a ≤ 54.9). This tendency was also consistent
over different network density levels (figures 5.14-B, 5.14-C, and 5.14-D), with the least resilient
communities being found for more cooperative communities.

The combined effects of the standard deviation of intensities and types of interaction were
similar to the combined effect of types and density of interactions. Furthermore, the effects of
density, intensity and types of interactions were cumulative. Thus, the least stable communities
were dense cooperative communities with a higher proportion of intense interactions (figures 5.14
and B.9).

For the whole data, competition and exploitation did not explain much of the resilience variance
(r2 = 0.05 for both regressions). On the other hand, the effect of cooperative interactions was
much more pronounced, explaining up to 21% of the overall variance of the rightmost eigenvalue
(r2 = 0.21).

Interestingly when only bounded attractors were considered, the competition and exploitation
effects upon resilience were distinct. For bounded attractors, competition led to decreased resilience
(a = 76, p = 1.2× 10−9, r2 = 0.15) while exploitation had the opposite effect, boosting resilience
by decreasing the expected rightmost eigenvalue (a = −75, p = 5.1× 10−9, r2 = 0.14). Also,
cooperation did not appear to have substantial effects on resilience for this subset of the data
(r2 = 0.1, p = 0.13).

85



Figure 5.12: Effect of network Density on network Resilience: The density indicates how
heavily taxa are connected in a given network. The rightmost eigenvalue corresponds to a measure
of resilience in the initial network; as the rightmost eigenvalue gets closer to the origin, the network
becomes more resilient. (A) Considering the different network topologies, as density increases, the
resilience decreases, and appears to be no difference in this tendency across network topologies.
(B) Considering different dynamics types, the relationship between network density and network
resilience appear to differ between attractor types. For equilibrium dynamics, as network density
increases, resilience decreases, whereas there is an overall small impact of density in resilience for
the cycle dynamics.

5.5.4 Resilience and Attractors / Topologies
The distribution of the rightmost eigenvalue of networks was similar across topologies, as it can be
seen in figure 5.15. Accordingly, summary values for these distributions were comparable regardless
of the particular distribution used to construct the networks, as seen in table 5.8. Overall, the
rightmost eigenvalue was distributed between 0.9 and 196, but heavily concentrated for small values
(75% percentile being λmax0 = 27.4 ).

In contrast, the distributions of the rightmost eigenvalue are distinct when different types of
dynamics are considered, as seen in figure B.8. There were more small eigenvalues in communities
that displayed equilibrium points in contrast to unbounded dynamics (see table 5.8). There were
also differences in the standard deviations, driven by each the number of occurrences of each
attractor.

n mean std min 25% 50% 75% max

1 Overall — 5.0× 104 24.10 27.07 0.91 8.26 14.94 27.44 196.0
2 Topology RG 9970 24.15 27.39 0.91 8.23 14.86 27.28 192
3 ER 9959 24.08 27.04 0.93 8.29 14.91 27.32 192.8
4 WS0.001 9943 24.49 27.58 0.94 8.35 15.19 27.78 196.0
5 WS0.01 9944 23.75 25.99 0.95 8.30 14.99 27.38 190.0
6 WS0.1 9959 24.04 27.30 0.94 8.14 14.83 27.30 192.1
7 Attractor Unbounded 5.0× 104 24.08 26.90 1.03 8.31 14.97 27.44 196.0
8 Equilibrium 223 28.94 52.36 0.91 1.63 2.75 26 191.3
9 Cycle 5 10.00 9.37 1.70 2.15 6.22 17.90 22

Table 5.8: Descriptive Statistics of the Distributions of Rightmost Eigen-
value for Different Subsets: We present the number of observations (n), mean,
standard deviation (std), minimum and maximum values (min, max) and the 25%,
50% and 75% quartiles that characterize the distribution of the rightmost eigenvalue
unfiltered, filtered by topology, and filtered by type of attractor. The 50% quartile
is also referred to as the median of the data.
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Figure 5.13: Effect of Interaction Intensity on network Resilience: The standard devia-
tion indicates the distribution of interaction intensity; larger standard deviation values indicate a
higher proportion of strong interactions. The rightmost eigenvalue corresponds to a measure of
resilience in the initial network; as the rightmost eigenvalue gets closer to the origin, the network
becomes more resilient. (A) Considering the different network topologies, although there is appears
to be no clear signal, in general, as the intensity of interaction increases, the resilience decreases.
(B) Considering different dynamics types, the relationship between interaction intensity and net-
work resilience appear to differ between attractor types. For equilibrium dynamics, as interaction
intensity increases, resilience decreases, which is the opposite observed for the cycle dynamics.

5.5.5 Distribution of Eigenvalues Before and After Stabilization
The distributions of eigenvalues for the initial and final networks were consistently different. The
initial eigenvalues were calculated for the matrix A′ = A + I, which is the interaction matrix but
with no intraspecific competition, i.e. aii = 0 i = 1, ..., N . The initial distribution was generally
centered at the complex plane’s origin, with most eigenvalues being scattered across an ellipsoidal
region. After the community’s temporal evolution, the eigenvalues were calculated for the Jacobian
matrix of the gLV model, equation (5.16). The final networks showed a distinctive distribution of
eigenvalues with the eigenvalue with the largest real part being very close to zero.

A significant part of the remaining eigenvalues was distributed in a "tail" with small or null
imaginary parts and negative real parts. Some eigenvalues also displayed larger imaginary parts
and were distributed with negative real parts with larger moduli associated with the imaginary
part of the complex number’s larger absolute values. In general, the final eigenvalues typically
assumed a spear-point or arrow-point shape oriented from left to right with the tip very close to
the complex plane origin. In order to illustrate the distinct typical distributions of eigenvalues,
we present an example in figure 5.16. In figure 5.16, the orange ellipsoidal distribution presents
the eigenvalues for the interaction matrix without intraspecific competition. Conversely, the blue
distribution is constructed for eigenvalues of the Jacobian matrix of the underlying gLV model
evaluated at the final densities ( ~X∗).
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Figure 5.14: The proportion of Interaction Types influences the Resilience across differ-
ent network Densities The density indicates how heavily taxa are connected in a given network.
The rightmost eigenvalue corresponds to a measure of resilience in the initial network; as the right-
most eigenvalue gets closer to the origin the network becomes more resilient. (A) In general, for
a large variability of densities, we observe that resilience increase as the proportion of cooperation
decreases. (B-D) This pattern is maintained across different density intervals. Note that as density
increases, the destabilizing effect of large proportions of cooperation increases, and competition
and exploitation decreases (C).
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Figure 5.15: Resilience is similar for different network Topologies The rightmost eigenvalue
corresponds to a measure of resilience in the initial network; as the rightmost eigenvalue gets closer
to the origin the network becomes more resilient. The left dashed line indicates the 25% quartile;
the central line indicates the median; the right dashed line indicates the 75% quartile. The resilience
pattern is similar for all topologies. The majority of rightmost eigenvalues are smaller than 50.
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Figure 5.16: Standard case depicting the Resilience variation between Initial and Final
Network: Orange depicts the eigenvalues from the A+I matrix, which corresponds to the initial
network. We can observe that the real and the imaginary component are centered around zero.
Blue depicts the eigenvalues for the Jacobian matrix evaluated around Equilibrium Point, which
corresponds to the final network. We can observe that the eigenvalues tend to concentrate on
the negative real component, which corresponding to a stabilization of the network after temporal
evolution.
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Chapter 6

Discussion

Links between different aspects of community structure and stability abound. Nevertheless, it is
a longstanding question whether particular trends are restricted to small regions of the parameter
space or are ubiquitous "law-like" relations. We approached this problem by exploring the param-
eter space of the generalized Lotka-Volterra model allowing for simultaneous changes in all input
variables. In this sense, the regularities we find are related to the entire region of the parameter
space we covered with the ecologically-motivated parametrization.

Indeed, the small number of input parameters we used to construct the ecological communities
is at odds with the N2 parameters needed to completely determine the generalized Lotka-Volterra
model. Namely, the parametrization of the gLV model was based on: i) interaction density;
ii) The standard deviation of interaction intensities; iii-iv) The proportions of cooperative and
competitive interactions; v) The number of populations in the community; vi) The choice of the
random graph model among the total of five possibilities. Therefore, it is natural that we expect
our parametrization to display some level of variability when measures taken from the input or
output communities are concerned. Nevertheless, it was possible to show that our inputs indeed
determined much of the studied variables to a high degree.

We measured smaller coefficients of variation when considering all the replicates that shared
the same input parameters than when all simulations (across distinct inputs) were considered. In
this sense, a large (small) coefficient of variation for some measure indicates that this measure is
heterogeneous (homogeneous) across the parameter space (see figure 5.1). That is, if the coefficient
of variation measured from one subset of the data presents smaller values than when measured
for all datasets, it indicates that the measure is more homogeneous in the subset. Overall, this
indicates that the set of all possible N2 aij parameters that satisfy the restrictions imposed by the
few input parameters presented characteristic values for most of the measured variables. Thus, we
confirm that density, intensity (standard deviation), and types of interactions determine the values
of many other properties and quantities of interest to a large extent.

Notably, topological variables displayed a minimal coefficient of variation overall, which is a
consequence of the fact that input variables directly determine the network’s topology. The random
network algorithm and the density determine much of the properties of the undirected network.
Other variables, such as the maximum rightmost eigenvalue, also display smaller than random
variabilities, supporting the linkage between ecological communities in their mathematical model
representations.

Overall there was a vast prevalence of unbounded attractors on simulated communities (see
figure 5.3). This high prevalence of unbounded attractors indicates that the generalized Lotka-
Volterra model’s parameter space is dominated by parameter sets that do not correspond to bio-
logically accurate depictions of ecological communities. This lack of correspondence between the
generalized Lotka-Volterra and the temporal evolution of ecological communities was suggested
before, mainly due to the unlimited benefits of mutualism assumed in the model (Qian and Akçay
2020). A complete analysis of the two-dimensional gLV indicates that when the parameters of the
mutual influence are such that a12a21 > 1, the time evolution of the system leads to unbounded
growth of both populations (see section 3.1.3). Possible solutions to this mismatch between model
and real system are modifying the functional response of the cooperation inside the model and
performing an informed parametrization of the model. In this sense, the algorithm 1 could be used
as a tool for parametrization so that regions associated with unbounded attractors are actively
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avoided.
Our simulations also support that equilibrium points are much more common than cycles

throughout the parameter space (see figure 5.3) since equilibria were associated with a substantially
higher number of replicates. Thus, the generalized Lotka-Volterra model predicts that ecological
communities should more commonly display coexistence dynamics for which the populations are
approximately fixed.

Additionally, bounded attractors were much more common for less intense interaction coef-
ficient values, i.e., the standard deviation of interaction intensities was smaller (see figure 5.5).
Presumably, larger proportions of intense interactions are associated with a higher probability
that at least two populations with cooperative interaction would overcome each other intraspecific
competition, leading to sustained positive growth rates for arbitrarily large densities. However,
additional investigation is needed on why unbounded attractors were ubiquitous even for less dense
and more competitive communities.

There was no striking difference in distributions of attractors across densities and topologies
covering the range of regular to random networks (see figure 5.8). Remarkably, the fact that pro-
portions of attractors did not depend strongly on the densities of communities overall might result
from the confounding effects stemming from considering all possible combinations of ecological
interactions (see figure 5.4). Indeed, cooperative and competitive scenarios are associated with
conflicting expectations for increased density levels. Cooperative scenarios would allow for more
unbounded attractors, as more pairs of populations could potentially achieve unlimited growth.
Conversely, competitive scenarios would have a decreased proportion of unbounded attractors due
to increased competitive regulations in the community. Thus, our results were in the opposite
direction of the strong link between higher connectance and equilibrium attractors reported by
Fowler (2009).

We provide additional support for the link between cooperation and decreased resilience (Coyte,
Schluter, and Foster 2015; Allesina and Tang 2012). Indeed, the strongest predictor of a commu-
nity’s resilience was the proportion of cooperative interactions, with more cooperative communities
being much less resilient overall (see figure 5.14). Since we did not measure the community’s inva-
sibility, it is not possible to indicate whether data gathered using our methodology would support
recent findings linking increased proportions of cooperation and community-level resistance to in-
vasions (Qian and Akçay 2020). Also, it is not possible to confirm that random communities with
diverse types of interaction would be locally stable most often (Mougi and Kondoh 2012; Mougi
and Kondoh 2014).

In our simulations, increased densities generally led to less stable communities, which is in
agreement with known results (e.g. Thébault and Fontaine 2010). The coefficient of determination
of the subjacent linear regression was relatively small overall (R2 ≈ 0.12) but presented higher
levels when only scenarios leading to equilibrium were considered (R2 ≈ 0.27; see figure 5.14
and table B.3). The difference in the coefficients of determination either suggests that densities
might become more relevant in determining resilience for communities that attain equilibrium or
that the requirements for equilibrium impose correlations that lead to increased coefficients of
determination. Independently of the specific attractor considered, higher densities were always
associated with rightmost eigenvalues with larger real parts.

The intensity of interactions was positively associated with the rightmost eigenvalue, so that
communities with more (less) intense interactions had larger (smaller) rightmost eigenvalues and
lower (higher) resilience (see figure B.9 and table B.3). Thus, we join other authors in predicting
that communities with lower densities and intensities of interactions and more competition/ex-
ploitation would be more resilient (Rohr, Saavedra, and Bascompte 2014; Coyte, Schluter, and
Foster 2015).

However, the signal linking resilience to other parameters may depend upon the type of dy-
namics in the community. In another way, the properties of interactions among populations jointly
determine the type of dynamics and resilience parameters. Nevertheless, the trends observed for the
regions in which equilibrium communities were detected could better represent real communities
and thus be more adequate.

Additionally, we did not find differences in the distribution of the rightmost eigenvalue between
topologies (see figure 5.15). This result accumulates to a body of literature that found out the
network topology is not the most crucial predictor of stability in ecological communities (Allesina et
al. 2015; Serván et al. 2018). Therefore, our results allow us to conclude that the type, density, and
intensities of interactions are more critical to the distribution of eigenvalues than the topology itself.
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In predicting ecological communities’ dynamical properties, interaction properties are more relevant
than the network’s specific topology. The similarity between rightmost eigenvalues distributions
for different network topologies further indicates that the variance detected on these networks was
not a direct consequence of topological differences between random network models considered.

Even though the input parameters were evenly distributed across the parameter space’s prede-
fined range, communities that showed bounded attractors were concentrated for particular values
and ranges of the parameters. Indeed, the set of communities with bounded attractors displayed a
high correlation of the input variables as it was the case of competition/exploitation and competi-
tion/density. These relations indicate trade-offs that must be satisfied in communities that present
bounded dynamics. For instance, denser networks should be associated with a higher proportion
of competitive interactions to present equilibrium points (see figure B.6).

Our results support the idea that the exclusive competition principle is at play for larger commu-
nities, even though its traditional formulation is based on reasoning ecological interactions between
populations pairs (see figure 5.9). Indeed we found that communities with larger proportions of
competitive interactions were associated with smaller proportions of survival. This competitive
exclusion principle was already discussed for larger random communities by other authors, and the
evidence in this work provides further confirmation of this trend (Serván et al. 2018).

The proportion of survival also depends on other input variables such as proportion of exploita-
tion and density of interactions (see figures B.3 and 5.10, and table B.2). However, it is unclear
whether these patterns represent distinct effects or whether they are consequences of the correla-
tions between the proportion of competition and other parameters. To elucidate the effects of each
input parameter upon coexistence, a methodology preventing such correlations will be necessary.
Once again, the particular topology of interactions was not determinant of coexistence levels in
the community.

92



Chapter 7

Conclusion

In this section, summarize the findings and the developments of this work. The perspectives and
open questions are presented at the same time that limitations are discussed. In the end, we
provide some concluding remarks on what we think is the central message of this work.

7.1 Caveats and Perspectives

Perhaps most importantly, a relatively large proportion of simulated communities detected pre-
sented unbounded dynamics (see section 5.3). The proportion of unbounded dynamics did not
interfere with the variability of parameters and measures or the links between input parameters
and resilience. However, since coexistence could only be determined for communities with bounded
dynamics, correlations among the input variables hinder conclusions concerning coexistence. Fur-
ther studies should address this difficulty by implementing statistical parameterizations that avoid
such correlations of input parameters on bounded communities. On a related issue, it is rele-
vant to study our conclusions in the face of more complex functional responses for the benefit of
cooperative interactions among populations.

The generation of the initial communities followed canonical models of random graphs in net-
work science (see section 2.2.3). However, these random graphs do not incorporate many struc-
tural details of real ecological communities. Therefore, it would be very beneficial to consider
other algorithms that generate networks more akin to real ecological communities as measured in
experimental and laboratory studies. Ultimately, it is essential to consider real network topologies
and verify whether modeling predictions are closely related to natural systems.

More realistic networks could be constructed by lifting the hypothesis that quantity, intensity,
and the type of interactions are independent of node identity. For instance, topology could be
modified by considering all the populations have limited available time for interactions so that
they should prioritize which populations they interact with, thus imposing restrictions on the
amount and intensities of interactions for each population. Additionally, the usage of algorithms
generating random graphs with other topological features such as assortativity or power-law de-
gree distribution would provide further insights on whether such features impact resilience and
coexistence.

By incorporating new measures to characterize topology and interaction properties, it would
be possible to compare predictions for different stability types. Indeed, the measures of stability
could be expanded to include other aspects beyond resilience and coexistence. This methodology
could provide further insights into the conflicting results reported in the literature by investigating
different stability concepts.

As the number of theoretical predictions of the rightmost eigenvalue and eigenvector distri-
butions in ecological communities abounds, it would be possible to use the methods employed in
this work to verify the accuracy of those predictions when considering large regions of the pa-
rameter space in a comparative manner. Additionally, lifting the assumption of an equal intrinsic
growth rate for all populations is a significant step for future investigations. We expect the picture
presented here to be improved by including the possibility of different and potentially negative
intrinsic growth rates. Indeed, by considering specific growth rates for each population, it will be
possible to study the feasibility regions for each parameter set.
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In future developments, computational program enhancements should focus on implementing
algorithms for the detection of chaotic dynamics. Additionally, the detection of (stable) equilibrium
points can be improved by checking if the eigenvalues at the equilibrium point are all negative.
This update will also allow for the detection of homoclinic and heteroclinic cycles, as the numerical
integration would no longer terminate in the vicinity of unstable equilibrium points.

We have focused on the properties of the ecological systems at the community level. Additional
studies can also adapt this methodology to focus on particular populations’ properties, answer-
ing questions such as what features allow a particular population to thrive or not in a complex
community.

Finally, our work is prone to the standard limitations of mathematical models in ecology.
Some assumptions are implicitly made due to the ordinary differential equations formulation, For
instance, we assume population density is continuous and that it changes smoothly in time. We
assume ecological interactions directly impact the growth rate of each population and that this
impact is proportional to the product of the densities of the interacting populations. The effects
of the interactions with many populations upon the growth rate of each population are additive.
We also assume that the coefficients of interaction do not change substantially in the time-scale of
the temporal evolution of the system. Indeed, such limitations are part of the generalized Lotka-
Volterra modeling framework and reinforce the importance of avoiding hasty generalizations and
inferences. Nevertheless, the usage of "toy models" in general, and the gLV in particular, have an
invaluable role in constructing solid ecological theories, as seen in the last century.

7.2 Take-home message

In summary, we have investigated the generalized Lotka-Volterra model through an ecologically
informed parametrization that allowed us to verify global patterns linking structure and dynamics
in ecological communities. We recovered stable speciose communities that displayed coexistence in
equilibrium points and cycles, reinforcing the suitability of the generalized Lotka-Volterra model to
grasp the essential properties of such communities. However, we conclude that a large portion of
the parameter space is dominated by ecologically inconsistent dynamics, indicating care should be
taken when linking model and ecological communities. Furthermore, we have reproduced many of
the previous results from mathematical and computational studies linking communities’ topological
and interaction properties to resilience and coexistence of populations. We conclude by pointing
out that it is essential to develop theories and computational models that entail large proportions
of the parameter space.
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Appendix A

Detection of Attractors’ Accuracy

The correct detection of the attractors is crucial to our methodology. In this appendix, we present
tests on the accuracy of the detection of the attractors. The first set of tests, presented in section
A.1, was based on generalized Lotka-Volterra systems with parametrizations whose attractors are
known. The parametrization source is indicated for each attractor and the attractor detected by
the program developed for this research.

Overall, the detected and reported attractors are equal. The only exception is a heteroclinic
cycle, which was detected as an equilibrium. This error is a consequence of the fact that if the
system evolution presents very slow dynamics, it is detected as an equilibrium point. In the referred
case, the system’s evolution goes very close to an equilibrium point, therefore being detected as
one. Additionally, parametrizations leading to cycles with no determined period are not detectable
through our algorithm since it assumes a constant period.

The system being integrated is the generalized Lotka-Volterra as presented in equation (3.27),
which we present below. We therefore present only the parametrizations and the initial values of
the populations’ densities. Most tests were performed in three dimensional systems, as these were
more abundant in the consulted literature.

d ~X

dt
= diag( ~X ◦ ~r)

(
~1 + A ~X

)
(A.1)

The second set of tests (section A.2) was performed by simulating 50 communities for which
we show the initial and final networks alongside the temporal evolution of the populations.

A.1 Systems from the Literature

In the following, we present the systems used to test attractors’ identification, reference, and
algorithm’s outcome.

A.1.1 Equilibrium Points

A.1.1.1 Takeuchi (1996, p.70)

A =



−1 −1 −4
−1.5 −1 −1

2 0.5 0


 (A.2a)

~r = ~1 (A.2b)
~X(t = 0) = sampled randomly from uniform distribution [0, 1] (A.2c)

The equilibrium point was correctly identified.
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A.1.1.2 Allesina (2020)

A = −




10 7 12
15 10 8
7 11 10


 (A.3a)

~r = ~1 (A.3b)
~X(t = 0) = sampled randomly from uniform distribution [0, 1] (A.3c)

The equilibrium point was correctly identified.

A.1.1.3 Many Isolated Populations

A = −diag(ai) (A.4a)

~r = ~1 (A.4b)
~X(t = 0) = sampled randomly from uniform distribution [0, 1] (A.4c)

The equilibrium point was correctly identified for all tested values of ai. We tested up to 500
populations, randomly sampling the parameters ai from a uniform distribution between 0 and 1.
The rationale behind this example is that when populations are not interacting, each one follows
a logistic growth, independently from the others.

A.1.2 Cycles

A.1.2.1 Allesina (2020)

A = −




10 6 12
14 10 2
8 18 10


 (A.5a)

~r = ~1 (A.5b)
~X(t = 0) = (0.1 0.2 0.6)

T (A.5c)

The cycle was correctly identified.

A.1.2.2 Takeuchi (1996, p.71)

A =



−1 −1 −7
−1.5 −1 −1
3.5 0.5 0


 (A.6a)

~r = ~1 (A.6b)
~X(t = 0) = (0.1 0.2 0.6)

T (A.6c)

The cycle was correctly identified.

A.1.2.3 Takeuchi (1996, p.76)

A = −




1 1 0 6
1.5 1 1.5 1
0 1 1 6
−3 −0.5 −3 0


 (A.7a)

~r = (1 1 1 − 1)
T (A.7b)

~X(t = 0) = (0.1 0.7 0.1 0.08)
T (A.7c)

The cycle was correctly identified.
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A.1.2.4 Takeuchi (1996, p.82)

A = −




1 1.5 4 2
0.6 1 2 4
−4 −2 0 0
−2 −4 0 0


 (A.8a)

~r = (1 1 − 1 − 1)
T (A.8b)

~X(t = 0) = (0.2 0.18 0.05 0.2)
T (A.8c)

The cycle was correctly identified.

A.1.2.5 Takeuchi (1996, p.85-86)

A = −




1 1.12 2 0.6
1.12 1 0.6 2
−2 −0.6 0 0
−0.6 −2 0 0


 (A.9a)

~r = (1 1 − 1 − 1)
T (A.9b)

~X(t = 0) = (0.2 0.18 0.05 0.2)
T (A.9c)

The cycle was correctly identified.

A.1.2.6 Takeuchi (1996, p.85-86)

A = −




1 1.18 2 0.6
1.18 1 0.6 2
−2 −0.6 0 0
−0.6 −2 0 0


 (A.10a)

~r = (1 1 − 1 − 1)
T (A.10b)

~X(t = 0) = (0.2 0.18 0.05 0.2)
T (A.10c)

The cycle was correctly identified.

A.1.2.7 Takeuchi (1996, p.85-86) - Heteroclinic Cycle

A = −




1 1.24 2 0.6
1.24 1 0.6 2
−2 −0.6 0 0
−0.6 −2 0 0


 (A.11a)

~r = (1 1 − 1 − 1)
T (A.11b)

~X(t = 0) = (0.2 0.18 0.05 0.2)
T (A.11c)

The cycle was not identified. The attractor detected was an equilibrium point.

A.2 Temporal Evolution

In the following, we present 50 examples parametrized according to a simplified experiment design
that followed the same procedure as the main results (see section 4.1). In this simplified version,
each experiment was associated with a single replicate. The Latin hypercube sampling presented
only ten distinct parameter combinations, and the number of initial populations was set to 20.
The outcomes of all replicates are shown, together with additional information on their input
parameters, initial rightmost eigenvalue, and the proportion of survival.
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Appendix B

Supplementary Figures and Tables

Table B.1: List of Symbols and Variables used in Numerical Results

Variable Representation

Abundance Assortativity abun. assort. see section 2.2.1
Abundances abund. final abundances of populations
Average Amplitude ave. amp. average amplitude of oscillating populations
Eigenvalues λi eigenvalues calculated at the point in which

equilibrium was detected
Initial/Final Average Shortest
Path Lengths

lG0 / lGf see section 2.2.1

Initial/Final Connected Net-
works

(0) / (f) connect.? 1 if network was connected, 0 otherwise

Initial/Final Degree Assortativi-
ties

rD0 / rDf see section 2.2.1

Initial/Final Degree Distribu-
tions

P (k)0 / P (k)f see section 2.2.1

Initial/Final Densities D0 / Df see section 2.2.1
Initial/Final Diameter d0 / df see section 2.2.1
Initial/Final Global Clustering
coefficients

C0 / Cf see section 2.2.1

Initial/Final Local Clustering
coefficients

C̄0 / C̄f see section 2.2.1

Initial/Final Modularities Q0 / Qf see section 2.2.1
Initial/Final Numbers of Com-
munities

(0) / (f) n comm. number of connected components in the net-
work

Initial/Final Numbers of Mod-
ules

(0) / (f) n modul. number of modules in the network

Initial/Final Orders N0 / Nf see section 2.2.1
Initial/Final Sizes E0 / Ef see section 2.2.1
Proportion of competitive inter-
actions (input)

% −
/
− proportion of competitive interactions on the

community
Proportion of cooperative inter-
actions (input)

% +
/

+ proportion of cooperative interactions on the
community

Proportion of exploitative inter-
actions

% +
/
− calculated from proportions of competition

and cooperation, based on equation (4.1)
Density (input) Din input density of interactions
Order (input) Nin number of initial populations in the commu-

nity (set to 400)
WS topology Reconnection
Probability (input)

pin probability of rewiring; see section 2.2.1

Continued on next page
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Variable Representation

Interaction Intensity Standard
Deviation

σin see section 4.1.3

Number of Coexisting Popula-
tions

N populations number of extant populations in the commu-
nity

Oscillation Period T oscillation period in communities with cyclic
attractors

Proportion of Survival % surv. number of coexisting populations divided by
number of initial populations

Rightmost Eigenvalue λmax real part of the eigenvalue with largest real
part

seed (input) seed random seed used as input; see section 4.1.4
Final Time for Equilibrium At-
tractors

EP tf see section 4.3.1

Type of Dynamics / Attractor Type of Dynamics see section 4.2
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Figure B.1: The correlation between all pairs of measured variables: The Pearson corre-
lation of each pair of variables is plotted as a symmetrical heatmap with correlated/uncorrelated
pairs represented by blue/red color. Variables are clustered together and sorted according to the
euclidean distance between the vector of correlations. At the left, a color code indicates the variable
type: the dynamic variables are represented in yellow, the topological variables are in brown, the
interaction variables are in blue, the input variables are in green, and identification variables are
in gray Some groups of variables display similar properties, as seen by adjacent analogous colors.
The variables in each group correlate with all measured variables similarly. For reference on the
symbols used, see table B.1.
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Figure B.2: Proportion of scenarios displaying bounded dynamics distributed across
interaction type and density: The proportion of scenarios displaying bounded dynamics is
presented in a ternary heatmap. Brighter colors indicate a larger proportion of bounded scenarios.
This proportion was measured by dividing the number of scenarios displaying bounded dynamics
(equilibrium points and cycles) by the total number of scenarios inside each hexagonal grid cell.
The input density of interactions of the network is measured as the ratio of the number of pairwise
interactions in the network divided by the maximum number of pairwise interactions that could
occur with the same number of populations. Regions in which no scenario was simulated are
colored black. The vast regions colored purple are related to the fact that 98.97 % of the simulated
scenarios were unbounded, in total. (A) Overall, most of the bounded scenarios were found for
a small portion of cooperation and varying amounts of asymmetric and competitive interactions,
with a larger proportion of competitive interactions related to more bounded scenarios. (B) The
largest proportion of bounded dynamics was found for scenarios with few cooperative interactions
(< 25%) and less dense interactions (0.05 ≤ D ≤ 0.20). (C) and (D) Albeit bounded scenarios
were much rarer in communities with larger interaction densities, we found bounded dynamics
associated with highly competitive communities.
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Figure B.3: Percentage of surviving population increases as proportion of Exploitation
interaction increases The percentage of survivors is estimated by the number of nodes in the
final network divided by the number of nodes in the initial network. The percentage of survivors
in the final network is affected by the proportion of exploitative interactions; as the proportion of
exploitation increases, the percentage of surviving population increases. (A) A comparable result
was found for all topologies, as it is possible to see the similarity between colored full lines and
black dashed line. The black line intercept and angular coefficient were calculated as the mean of
these parameters for the colored lines. (B) Equilibrium point and cycle dynamics show a similar
overall trend. Equilibrium point scenarios had a more steep increase in the percentage of surviving
populations with increasing proportions of exploitative interactions, as indicated by the angular
coefficient than cycle dynamics.
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Figure B.4: Percentage of surviving population increases as proportion of Cooperation
interaction increases: The percentage of survivors is estimated by the number of nodes in the
final network divided by the number of nodes in the initial network. The percentage of survivors
in the final network is affected by the proportion of exploitative interactions; as the proportion of
exploitation increases, the percentage of surviving population increases. (A) A comparable result
was found for all topologies, as it is possible to see the similarity between colored full lines and
black dashed line. The black line intercept and angular coefficient were calculated as the mean of
these parameters for the colored lines. (B) Equilibrium point and cycle dynamics show a similar
overall trend. Equilibrium point scenarios had a more steep increase in the percentage of surviving
populations with increasing proportions of exploitative interactions, as indicated by the angular
coefficient than cycle dynamics.
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Figure B.5: The proportion of scenarios displaying bounded dynamics distributed across
interaction type and intensity The percentage of survivors is estimated by the number of nodes
in the final network divided by the number of nodes in the initial network. The density indicates
how heavily taxa are connected in a given network. The proportion was measured by dividing the
number of scenarios displaying bounded dynamics (equilibrium points, and cycles) by the total
number of scenarios inside each hexagonal grid cell. Regions in which no scenario was simulated
are colored black.

Figure B.6: Distribution of Input Density and Proportion of Competition: The percent-
age of survivors is estimated by the number of nodes in the final network divided by the number
of nodes in the initial network. The overall distribution of input density and proportion of compe-
tition is shown in orange dots. The subset of the distribution of input density and proportion of
competition leading to bounded attractors is highlighted in blue crosses.
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Figure B.7: Order of the Final Network Decreases with Increasing Competition: Order
of the final network is affected by proportion of competition in the network, more competition being
related smaller networks. (A) A comparable result was found for all topologies, as it is possible
to see the similarity between colored full lines and black dashed line. The black line intercept
and angular coefficient were calculated as the mean of these parameters for the colored lines. (B)
Equilibria and cyclic were associated to distinct trends on the reduction of final network order.
Cyclic scenarios had a more steep decrease in order of final network with increasing competition
as indicated by the angular coefficient. Scenarios with cycles, however, had a larger decrease in
order for the no competition best case scenario as revealed by lower intercept.
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Table B.2: Regressions Between the Proportion of Survival and Input Variables: A summary of statistical properties of regressions
between the proportion of survival and proportion of competition, exploitation and cooperation, density, and standard deviation of the distribution
of interaction intensities.

x-variable r2 AIC n a 95% CI p-value b 95% CI p-value

0 Prop. Competition (−
/
−) Overall 0.72 −437.6 288 −0.68 (−0.73,−0.63) 3.5× 10−80 0.70 (0.67, 0.73) 2.6× 10−134

1 Intercept 0.0 −76.96 288 0.33 (0.31, 0.36) 9.9× 10−80

2 Topology WS0.001 0.60 −88.95 77 −0.64 (−0.76,−0.52) 2.1× 10−16 0.68 (0.60, 0.76) 1.1× 10−27

3 ER 0.85 −109.1 54 −0.71 (−0.80,−0.63) 8.3× 10−23 0.70 (0.65, 0.75) 5.7× 10−33

4 RG 0.67 −52.99 44 −0.70 (−0.85,−0.54) 1.3× 10−11 0.68 (0.60, 0.75) 8.1× 10−21

5 WS0.1 0.78 −105.1 58 −0.69 (−0.79,−0.59) 6.7× 10−20 0.72 (0.66, 0.78) 3.4× 10−31

6 WS0.01 0.76 −93.75 55 −0.71 (−0.82,−0.60) 3.2× 10−18 0.75 (0.68, 0.81) 4.7× 10−29

7 Attractor Equilibrium 0.80 −494.3 269 −0.72 (−0.77,−0.68) 5.1× 10−94 0.73 (0.71, 0.76) 5.2× 10−145

8 Cycle 0.19 −9.17 19 −0.32 (−0.66, 0.01) 0.06 0.41 (0.25, 0.57) 4.5× 10−5

9 Prop. Exploitation (+
/
−) Overall 0.70 −420.6 288 0.69 (0.64, 0.74) 1.6× 10−76 0.08 (0.05, 0.10) 2.9× 10−10

10 Intercept 0.0 −76.96 288 0.33 (0.31, 0.36) 9.9× 10−80

11 Topology WS0.001 0.60 −90.26 77 0.65 (0.53, 0.78) 1.1× 10−16 0.08 (0.03, 0.13) 1.1× 10−3

12 ER 0.82 −99.51 54 0.73 (0.63, 0.82) 8.6× 10−21 0.04
(
−5.0× 10−3, 0.09

)
0.08

13 RG 0.57 −41.48 44 0.62 (0.45, 0.79) 3.5× 10−9 0.09
(
7.2× 10−3, 0.18

)
0.03

14 WS0.1 0.75 −99.35 58 0.71 (0.61, 0.82) 1.1× 10−18 0.08 (0.03, 0.13) 2.1× 10−3

15 WS0.01 0.82 −108.8 55 0.77 (0.67, 0.87) 2.2× 10−21 0.08 (0.04, 0.13) 1.9× 10−4

16 Attractor Equilibrium 0.81 −507.6 269 0.76 (0.72, 0.81) 6.8× 10−97 0.07 (0.05, 0.09) 2.4× 10−10

17 Cycle 0.23 −9.92 19 0.34 (0.02, 0.67) 0.04 0.09 (−0.12, 0.29) 0.38

18 Prop. Cooperation (+
/

+) Overall 0.02 −81.20 288 0.48 (0.10, 0.85) 0.01 0.29 (0.25, 0.33) 1.6× 10−32

19 Intercept 0.0 −76.96 288 0.33 (0.31, 0.36) 9.9× 10−80

20 Topology WS0.001 1.4× 10−3 −19.37 77 0.13 (−0.66, 0.92) 0.75 0.28 (0.21, 0.36) 4.5× 10−10

21 ER 0.08 −12.19 54 1.13 (0.03, 2.23) 0.04 0.23 (0.12, 0.34) 1.3× 10−4

22 RG 0.01 −5.19 44 0.35 (−0.53, 1.22) 0.43 0.33 (0.21, 0.45) 2.2× 10−6

23 WS0.1 0.04 −20.65 58 0.66 (−0.16, 1.48) 0.11 0.28 (0.19, 0.37) 5.5× 10−8

24 WS0.01 3.2× 10−3 −14.65 55 0.18 (−0.68, 1.03) 0.68 0.34 (0.24, 0.44) 1.3× 10−8

25 Attractor Equilibrium 0.02 −73.40 269 0.50 (0.10, 0.89) 0.01 0.29 (0.24, 0.33) 2.5× 10−28

Continued on next page
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x-variable r2 AIC n a 95% CI p-value b 95% CI p-value

26 Cycle 0.09 −6.88 19 −1.85 (−4.85, 1.15) 0.21 0.33 (0.21, 0.45) 2.1× 10−5

27 Input Density (Din) Overall 0.59 −330.6 288 −1.18 (−1.30,−1.07) 4.6× 10−57 0.56 (0.54, 0.59) 4.6× 10−120

28 Intercept 0.0 −76.96 288 0.33 (0.31, 0.36) 9.9× 10−80

29 Topology WS0.001 0.60 −89.63 77 −1.13 (−1.34,−0.91) 1.5× 10−16 0.54 (0.49, 0.60) 5.7× 10−31

30 ER 0.58 −54.53 54 −1.12 (−1.38,−0.85) 2.6× 10−11 0.55 (0.48, 0.62) 2.0× 10−22

31 RG 0.60 −45.02 44 −1.31 (−1.64,−0.98) 6.3× 10−10 0.60 (0.53, 0.67) 5.0× 10−20

32 WS0.1 0.51 −59.93 58 −1.13 (−1.42,−0.83) 2.4× 10−10 0.54 (0.47, 0.60) 1.1× 10−23

33 WS0.01 0.65 −71.72 55 −1.31 (−1.58,−1.05) 1.4× 10−13 0.61 (0.54, 0.67) 2.3× 10−26

34 Attractor Equilibrium 0.62 −326.5 269 −1.21 (−1.32,−1.09) 8.5× 10−58 0.58 (0.55, 0.60) 4.0× 10−117

35 Cycle 0.35 −13.21 19 −1.03 (−1.74,−0.31) 7.8× 10−3 0.44 (0.31, 0.57) 2.5× 10−6

36 Interaction Intensity (σin) Overall 0.03 −84.04 288 −0.32 (−0.53,−0.11) 2.7× 10−3 0.43 (0.36, 0.49) 2.2× 10−29

37 Intercept 0.0 −76.96 288 0.33 (0.31, 0.36) 9.9× 10−80

38 Topology WS0.001 0.01 −20.34 77 −0.26 (−0.75, 0.24) 0.31 0.37 (0.22, 0.53) 9.0× 10−6

39 ER 0.01 −8.74 54 −0.16 (−0.53, 0.20) 0.38 0.38 (0.24, 0.51) 4.7× 10−7

40 RG 0.03 −5.67 44 −0.31 (−0.92, 0.29) 0.30 0.46 (0.27, 0.64) 1.0× 10−5

41 WS0.1 0.09 −23.20 58 −0.59 (−1.10,−0.07) 0.03 0.52 (0.35, 0.69) 5.8× 10−8

42 WS0.01 0.06 −17.80 55 −0.51 (−1.08, 0.05) 0.07 0.50 (0.33, 0.66) 1.6× 10−7

43 Attractor Equilibrium 0.03 −76.43 269 −0.38 (−0.63,−0.13) 2.6× 10−3 0.44 (0.37, 0.52) 1.0× 10−25

44 Cycle 1.3× 10−4 −5.08 19 −0.01 (−0.68, 0.65) 0.96 0.29 (−0.05, 0.63) 0.09
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Table B.3: Regressions Between Rightmost Eigenvalue and Input Variables: A summary of statistical properties of regressions between the
rightmost eigenvalue and proportion of competition, exploitation and cooperation, density, and standard deviation of the distribution of interaction
intensities.

x-variable r2 AIC n a 95% CI p-value b 95% CI p-value

0 Prop. Competi-
tion (−

/
−)

Overall — 0.05 4.7× 105 5.0× 104 −25.95 (−26.96,−24.94) 0.0 32.68 (32.27, 33.08) 0.0

1 Intercept — 0.0 4.7× 105 5.0× 104 — — — 24.10 (23.86, 24.34) 0.0
2 Topology WS0.001 0.04 9.4× 104 9943 −24.06 (−26.37,−21.75) 1.1× 10−90 32.44 (31.51, 33.37) 0.0
3 ER 0.05 9.3× 104 9959 −26.86 (−29.10,−24.61) 1.5× 10−118 32.97 (32.06, 33.87) 0.0
4 RG 0.05 9.4× 104 9970 −25.42 (−27.70,−23.14) 2.1× 10−103 32.56 (31.64, 33.48) 0.0
5 WS0.1 0.05 9.4× 104 9959 −26.05 (−28.32,−23.78) 3.8× 10−109 32.65 (31.73, 33.56) 0.0
6 WS0.01 0.06 9.2× 104 9944 −27.36 (−29.52,−25.21) 1.1× 10−132 32.78 (31.91, 33.65) 0.0
7 Attractor Unbounded 0.05 4.6× 105 5.0× 104 −26.76 (−27.76,−25.75) 0.0 32.90 (32.50, 33.30) 0.0
8 Equilibrium 0.15 2363.8 223 75.97 (52.40, 99.54) 1.2× 10−9 −11.28 (−25.29, 2.73) 0.11
9 Cycle 0.02 39.35 5 4.02 (−48.37, 56.41) 0.82 8.18 (−19.96, 36.32) 0.42
10 Prop. Exploita-

tion (+
/
−)

Overall 0.05 4.7× 105 5.0× 104 −26.90 (−27.89,−25.91) 0.0 33.10 (32.70, 33.51) 0.0

11 Intercept 0.0 4.7× 105 5.0× 104 — — — 24.10 (23.86, 24.34) 0.0
12 Topology WS0.001 0.05 9.4× 104 9943 −27.04 (−29.30,−24.78) 2.2× 10−118 33.55 (32.62, 34.47) 0.0
13 ER 0.05 9.3× 104 9959 −26.80 (−29.02,−24.59) 3.9× 10−121 33.04 (32.14, 33.94) 0.0
14 RG 0.05 9.4× 104 9970 −27.14 (−29.38,−24.90) 2.8× 10−121 33.23 (32.32, 34.15) 0.0
15 WS0.1 0.05 9.4× 104 9959 −26.47 (−28.70,−24.23) 4.5× 10−116 32.90 (31.98, 33.81) 0.0
16 WS0.01 0.06 9.2× 104 9944 −27.05 (−29.17,−24.93) 7.0× 10−134 32.80 (31.94, 33.67) 0.0
17 Attractor Unbounded 0.05 4.6× 105 5.0× 104 −26.64 (−27.63,−25.65) 0.0 32.99 (32.59, 33.39) 0.0
18 Equilibrium 0.14 2366.6 223 −74.99 (−99.28,−50.70) 5.1× 10−9 56.29 (45.35, 67.22) 4.2× 10−20

19 Cycle 4.9× 10−3 39.42 5 −2.09 (−56.64, 52.46) 0.91 11.05 (−20.52, 42.62) 0.35
20 Prop. Coopera-

tion (+
/

+)
Overall 0.21 4.6× 105 5.0× 104 54.14 (53.21, 55.06) 0.0 5.98 (5.61, 6.35) 2.5× 10−213

21 Intercept 0.0 4.7× 105 5.0× 104 — — — 24.10 (23.86, 24.34) 0.0
22 Topology WS0.001 0.19 9.2× 104 9943 52.33 (50.19, 54.46) 0.0 6.96 (6.09, 7.83) 2.5× 10−55

Continued on next page
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x-variable r2 AIC n a 95% CI p-value b 95% CI p-value

23 ER 0.22 9.2× 104 9959 54.94 (52.89, 56.99) 0.0 5.69 (4.86, 6.53) 1.0× 10−40

24 RG 0.20 9.2× 104 9970 53.82 (51.73, 55.92) 0.0 6.16 (5.31, 7.01) 2.0× 10−45

25 WS0.1 0.20 9.2× 104 9959 53.82 (51.73, 55.90) 0.0 6.03 (5.18, 6.88) 7.3× 10−44

26 WS0.01 0.24 9.0× 104 9944 55.77 (53.83, 57.71) 0.0 5.06 (4.27, 5.85) 5.4× 10−36

27 Attractor Unbounded 0.22 4.5× 105 5.0× 104 54.52 (53.61, 55.44) 0.0 5.77 (5.40, 6.14) 4.4× 10−201

28 Equilibrium 0.01 2398.9 223 −85.70 (−197.9, 26.46) 0.13 38.02 (24.28, 51.75) 1.3× 10−7

29 Cycle 0.19 38.42 5 −74.78 (−361.9, 212.3) 0.47 13.20 (−5.35, 31.76) 0.11
30 Input Density

(Din)
Overall 0.12 4.6× 105 5.0× 104 71.77 (70.05, 73.49) 0.0 4.35 (3.83, 4.87) 1.6× 10−59

31 Intercept 0.0 4.7× 105 5.0× 104 — — — 24.10 (23.86, 24.34) 0.0
32 Topology WS0.001 0.12 9.3× 104 9943 74.50 (70.58, 78.41) 2.6× 10−285 3.99 (2.80, 5.18) 5.6× 10−11

33 ER 0.11 9.3× 104 9959 69.95 (66.10, 73.81) 3.6× 10−261 4.82 (3.65, 5.99) 8.8× 10−16

34 RG 0.11 9.3× 104 9970 71.38 (67.48, 75.28) 1.6× 10−265 4.50 (3.32, 5.69) 1.0× 10−13

35 WS0.1 0.12 9.3× 104 9959 73.92 (70.05, 77.79) 1.8× 10−287 3.71 (2.53, 4.88) 6.8× 10−10

36 WS0.01 0.12 9.2× 104 9944 69.09 (65.39, 72.78) 5.3× 10−276 4.73 (3.61, 5.86) 1.8× 10−16

37 Attractor Unbounded 0.12 4.6× 105 5.0× 104 71.36 (69.64, 73.07) 0.0 4.42 (3.89, 4.94) 1.6× 10−61

38 Equilibrium 0.27 2331.8 223 195.9 (152.9, 238.9) 1.2× 10−16 −9.89 (−20.28, 0.49) 0.06
39 Cycle 5.0× 10−4 39.45 5 1.13 (−91.91, 94.17) 0.97 9.72 (−17.61, 37.05) 0.34
40 Interaction In-

tensity (σin)
Overall 0.11 4.6× 105 5.0× 104 16.98 (16.54, 17.41) 0.0 5.36 (4.84, 5.89) 1.8× 10−87

41 Intercept 0.0 4.7× 105 5.0× 104 — — — 24.10 (23.86, 24.34) 0.0
42 Topology WS0.001 0.09 9.3× 104 9943 16.28 (15.28, 17.28) 7.1× 10−214 6.51 (5.30, 7.73) 1.2× 10−25

43 ER 0.11 9.3× 104 9959 17.00 (16.03, 17.97) 5.7× 10−245 5.32 (4.14, 6.50) 1.3× 10−18

44 RG 0.10 9.3× 104 9970 16.65 (15.67, 17.64) 7.3× 10−229 5.79 (4.59, 6.99) 3.6× 10−21

45 WS0.1 0.10 9.3× 104 9959 16.68 (15.70, 17.66) 1.9× 10−230 5.63 (4.43, 6.83) 3.8× 10−20

46 WS0.01 0.13 9.2× 104 9944 18.27 (17.35, 19.19) 6.5× 10−309 3.57 (2.45, 4.69) 4.7× 10−10

47 Attractor Unbounded 0.11 4.6× 105 5.0× 104 17.24 (16.81, 17.67) 0.0 4.99 (4.46, 5.52) 5.1× 10−76

48 Equilibrium 6.0× 10−4 2401.1 223 −11.86 (−76.06, 52.34) 0.72 32.35 (12.64, 52.05) 1.4× 10−3

49 Cycle 0.79 31.57 5 37.17 (2.27, 72.06) 0.04 −9.59 (−29.27, 10.09) 0.22
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Figure B.8: Distribution of rightmost eigenvalues across topologies: The rightmost eigen-
value is measured for the initial community. The distributions of the proportion of survival were
similar across topologies. The ’violin’ shape indicates the distribution of values.
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Figure B.9: The rightmost eigenvalue distributed across interaction type and intensity
of interaction The rightmost eigenvalue is measured for the initial community. The median is
taken from all values inside each hexagonal area, and brighter values indicate larger rightmost
eigenvalue and lower resilience. The intensity of interaction is measured through the standard
deviation of the normal distribution of interaction intensities. Regions in which no scenario was
simulated are colored black.
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