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Abstract

In this dissertation, we analytically study the apex field enhancement factor
(FEF), γa, by constructing a method which consists in approximating axial
multipole coefficients of a general axial-symmetric conducting emitter shape,
on which the apex FEF can be calculated by summing its respective Legendre
series. Such method is analytically applied for a conducting hemisphere on a
flat plate, confirming the known result of γa = 3. Also, it is applied on a hemi-
ellipsoid on a plate where the values of the apex FEF are compared with the
ones extracted from the analytical expression. Then, the method is applied for
the hemisphere on a post (HCP) model. In this case, to analytically estimate
the apex FEF from first principles is a problem of considerable complexity.

Despite slow convergence of the apex FEF, useful analytical conclusions are
drawn and explored, such as, it is shown that all even multipole contributions
of the HCP model are zero, which in turn leads to restrictions on the charge
density distribution: it will be shown the surface charge density must be an
odd function with respect to height in an equivalent system. Also, expressions
found for the apex FEF depend explicitly on the aspect ratio, that is, the ratio of
height by base radius. Using the dominant multipole contribution, the dipole, at
sufficient large distances, it is shown that, for two interacting emitters, as their
separation distance increases, the fractional change in apex FEF, δ, decreases
following a power law with exponent −3. The result is extended for conducting
emitters having an arbitrary axially-symmetric shape, where it is also shown δ
has a pre-factor depending on geometry, confirming the tendency observed in
recent analytical and numerical results.
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Resumo

Nessa dissertação, estudamos analiticamente o fator de amplificação por efeito
de campo eletrostático (FEF), γa, por construir um método que consiste em
aproximar coefficientes multipolos axiais de uma superf́ıcie emissora condutora
axialmente simetrica, no qual o FEF no ápice pode ser obtido somando a re-
spectiva série de Legendre. Tal método é aplicado analiticamente para uma
semi-esfera condutora sobre uma placa plana, confirmando o resultado con-
hecido γa = 3. Ademais, o método foi aplicado a um semi-elipsóide sobre uma
placa, onde os valores do FEF no ápice são comparados com os valores extráıdos
a partir da expressão anaĺıtica. Em seguida, o método é aplicado para o modelo
de uma semi-esfera sobre um poste (modelo HCP). Neste caso, estimar ana-
liticamente o FEF no ápice a partir de primeiros prinćıpios é um problema de
considerável complexidade.

Apesar da lenta convergência do FEF no ápice, conclusões anaĺıticas úteis
são tiradas e exploradas, como por exemplo, é mostrado que todas as con-
tribuições de multipolos pares do modelo HCP são nulas, o que por sua vez
leva a restrições na distribuição de densidade de carga: será mostrado que a
densidade de carga superficial deve ser uma função ı́mpar em relação à altura
em um sistema equivalente. Além disso, expressões encontradas para o FEF no
ápice dependem explicitamente da razão de aspecto, ou seja, a razão da altura
com relação ao raio da base. Utilizando a contribuição de multipolo dominante,
o dipolo, a distâncias suficientemente grandes, mostra-se que, para dois emis-
sores interagentes, à medida que sua distância de separação aumenta, a variação
fracionária do FEF no ápice, δ, diminui seguindo uma lei de potência com ex-
poente −3. O resultado é estendido para emissores condutores com geometria
arbitrária eixo-simétricos, onde também é mostrado que δ tem um pré-fator
dependendo da geometria, confirmando a tendência observada em resultados
recentes, anaĺıticos e numéricos.
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Chapter 1

Introduction

In the context of field emission at low temperatures, often called cold field
electron emission (CFE), protrusions in the micro or nano scale over a flat con-
ducting plate, experiences an amplification of the external applied electrostatic
field at some parts of its surface. A common characterization parameter of such
phenomena is the local field enhancement factor (FEF) at the apex, denoted by
γa = Fa/FM , which is the ratio between the field at the apex of the surface Fa,
and the external macroscopic field FM . For an ideal emitter, FM is taken to be
FM = V/d, where V is the voltage difference between the two plates, and d its
separation distance. If the distance d is large enough, the apex FEF is known
to depend only on the geometry of the protrusion.

The most common method of measuring emitter characteristics, is by means
of a current-voltage (IV) plot: experimental control over the plate voltage V is
assumed, and the emitted current I can be measured, for instance under high
ultra-vacuum conditions. Field emission can be modeled by a Fowler-Nordheim
(FN)-type equation: J = AF 2

M exp(−B/FM ), where A and B are parameters
which may depend on the macroscopic field FM , J is a current density, which in
some contexts is taken as a macroscopic current density JM , some characteristic
current density at a characteristic point Jkc, or the local current density Jl,
depending on what is wanted to be analyzed, or measured.

The emission is called orthodox if some conditions are met [1], such as: (1)
uniform voltages on the electrodes, (2) the measured current is only due to
CFE phenomena, (3) deep tunneling, that is, the Fermi level is “much” less
than the top of potential barrier in which they tunnel, (4) the work function of
the emitter is constant across its surface.

The parameters A and B are relevant. For instance, one can model the
local current density by using a one dimensional exact triangular (ET) potential
barrier. It will depend on the probability of an electron to tunnel the barrier,
and, then, J is given by an FN-type equation, where B depends on γa, and
A can be assumed to be a constant dependent on fundamental physical and
mathematical constants. To extract the coefficients A and B, one can plot
ln(I/V 2) vs 1/V , which is known as a FN plot. If the emission is orthodox,
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then, a FN-plot will be a nearly straight line, where the slope will depend on
B. This procedure allows the FEF to be measured experimentally, by looking
at the slope of a nearly linear FN type plot [1, 2].

As for a technological example: a protrusion might be engineered into a flat
surface, with the aim of causing field emission at lower external fields. For in-
stance, post-like carbon nanotubes (CNTs) may be used as a single or a large
area emitter. That indeed has several applications, such as, the manufacturing
of microwave amplifiers, electron microscopy, field emission displays and other
applications [3, 4, 5, 6, 7]. There has been several works that use a classi-
cal model to estimate the apex FEF of arrays of CNTs [8, 9, 10], as well as
experimental measurements [11, 12, 13].

In an attempt to model an isolated post-like protrusion, like a CNT, several
models have been made, treating the protrusion as a classical conducting entity,
with a specific geometry [14]. Some of them will be listed as follows.

The hemisphere on a conducting plate model assumes a hemisphere of radius
R above the flat plate, and attempts to calculate the apex FEF. This case can
be analytically solved from first principles [15], yielding a known γa = 3. Using
it to model the FEF of a general emitter creates some problems: the model fails
to capture the height of the emitter.

The Hemi-ellipsoid on a conducting plate model is a conducting revolution
hemi-ellipsoid of base radius R and height h, placed over a flat conducting plate.
It can also be solved analytically using spheroidal coordinate system [16], thus
γa is known. Such model is more realistic than the former, because it can have
any height, however, the greater the height, the greater the Gaussian curvature
at the apex, and thus, the greater the charge density, which in turn, leads to
large (and possibly unrealistic) apex FEFs.

The Hemisphere on a cylindrical post (HCP) model, is a conducting hemi-
sphere of radius R, over a cylindrical shape of height `, over a plate. The overall
height of the structure is often called h = R + `. Such model, in turn, has a
smooth curvature at the apex, and can have any height. On the other hand, this
model lacks an analytical solution in the literature, though accurate numerical
computations have been done [17].

In the case of a CNT, there’s no reason to believe that classical models would
be effective, as quantum effects might be relevant. However, a recent paper [18]
have numerically explored the possibility for determining a characteristic FEF
of a CNT using density functional theory (DFT) [19], a quantum mechanical
method, and compared with the the local FEFs of the HCP model. The authors
found that, depending on how the FEF is defined in the quantum case, there
exists a relation between the FEF calculated from DFT, and the FEF calculated
from the classical HCP model. This highlights the relevance of classical models,
which will be the focus of this dissertation.

In this work, a mathematical method is constructed in order to calculate the
potential over an emitter shape with axial symmetry from first principles, and
the method is applied for the case of a hemisphere on a plate, a hemiellipsoid
on a plate, and a HCP on a plate. The method allows analytical conclusions to
be drawn, and these will be explored.
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This dissertation is organized as follows: Chapter 02 explains the method, its
connection with the multipole coefficients, and proves how multipole moments
scales linearly with the external macroscopic field. In chapter 03, the method is
applied to model shapes in which the apex FEF is known: the hemisphere on a
plate model, and the hemi-ellipsoid on a plate model. In chapter 04, the method
is applied to the HCP model. It will be shown that even multipoles are zero for
the system HCP emitter on a plate, and some consequences of it. Additionally,
an approximate first-order expression for the FEF will be calculated for the
range h � R. Chapter 05 will prove some theorems for a general emitter, as
long as some conditions are met. Chapter 06 will conclude the dissertation, with
a review of the main results obtained, and perspectives of future work. For the
sake of transparency, there will be several appendixes, in which some technical
derivations are shown in detail.
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Chapter 2

Method

In general, it is possible to expand the electrostatic potential by means of spher-
ical harmonics. However, if a system has axial symmetry (such as, the HCP
model), the potential can be written using Legendre polynomials. The poten-
tial thus, can be expressed in the following way:

V (r, θ) = −E0r cos θ +

∞∑
l=0

Alr
−(l+1)Pl(cos θ). (2.0.1)

In (2.0.1), E0 is the magnitude of the external field, oriented towards the
positive z-axis. In the context of field emission, it is often considered the field
to be F , oriented towards the negative z-axis (that is, F = −E0).

In order to find the proper coefficients Al, it is imposed the following bound-
ary condition: V = 0 at the surface S. To aid in this goal, an error function is
defined as the following:

Σ(Al) =

∫
S

V (r, θ)2dS. (2.0.2)

Notice that, if V is smooth, Σ(Al) = 0 if and only if boundary conditions
are met. Otherwise, Σ(Al) > 0.

Inserting (2.0.1) at (2.0.2), then:

Σ(Al) =

∫
S

E2
0r

2 cos2 θdS −
∞∑
i=0

2E0AiGi +

∞∑
i=0

∞∑
j=0

AiAjIij , (2.0.3)

where the quantities Gi and Iij , which will be called G-integrals and the I-
integrals from now on, are defined as:

Gi =

∫
S

r−iPi(cos θ) cos θdS, Iij =

∫
S

r−i−j−2Pi(cos θ)Pj(cos θ)dS

(2.0.4)
As for a property visible from the definition, the I integral is symmetric,

that is, Iij = Iji.
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The goal is to find all Al that minimizes Σ(Al). A necessary condition is:

∂Σ

∂Al
= 0, for all l ∈ {0, 1, 2, ...}. (2.0.5)

Imposing (2.0.5) at (2.0.3), then:

∂Σ

∂Al
= 0 =⇒

∞∑
k=0

IlkAk = E0Gl.

The above equation can be written in matrix form:
I00 I01 I02 I03 · · ·
I10 I11 I12 I13 · · ·
I20 I21 I22 I23 · · ·
I30 I31 I32 I33 · · ·
...

...
...

...
. . .




Ã0

Ã1

Ã2

Ã3

...

 =


G0

G1

G2

G3

...

 (2.0.6)

Where Ãl = Al/E0. If the linear system can be solved, then the values of
Al are obtained, and one can find the electrostatic potential (2.0.1). However,
it is reasonable to assume truncating the system yields approximate solutions
for the values of Al. Truncating the I-Matrix into a n × n matrix, and the
G,A-Vectors into a n-dimensional vector, then the now finite linear system can
be solved for the Al values.

Definition 2.0.1. I-Matrix, G-Vector, A-Vector, normalized A-Vector are the
truncated matrix filled with the integrals Iij , the truncated vector filled with

the values Gl, Al and Ãl, respectively.

2.1 The method: Truncating the system

Even if the values Iij and Gl doesn’t depend on where the system is truncated
(that is, on the value of n), however, Al does. Thus, if the system is truncated
having a matrix of dimensions (n+ 1)× (n+ 1), the A-Values will be called as

A
(n)
l . As an example, a good exercise is to solve for n = 0 and n = 1.

Truncating at n = 0

On that, the matrix is of dimension 1× 1:

I00Ã
(0)
0 = G0 =⇒ Ã

(0)
0 =

G0

I00
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Truncating at n = 1

On that, the matrix is of dimension 2× 2:[
I00 I01
I10 I11

][
Ã

(1)
0

Ã
(1)
1

]
=

[
G0

G1

]
=⇒

[
Ã

(1)
0

Ã
(1)
1

]
=

1

det I2×2

[
I11 −I01
−I10 I00

] [
G0

G1

]
Henceforth:

Ã
(1)
0 =

I00G0 − I01G1

I00I11 − I10I01
, Ã

(1)
1 =

I10G0 − I00G1

I00I11 − I10I01
(2.1.1)

An important comment is that, A
(0)
0 6= A

(1)
0 , but, it is possible to write A

(1)
0

as a function of A
(0)
0 . For instance, using the fact I01 = I10, then:

A
(1)
0 = A

(0)
0

I11 − I01G1

G0

I11 − I201
I11

The only difficulty in this method, is solving all I-integrals and G-integrals.
That can be done analytically depending on the shape to be integrated, but also,
by means of numerical integration procedures. In increasing the dimension of
the linear system by truncating at a high value of n, it is expected to get closer
to the real potential. Furthermore, this procedure is valid for any shape S, as
long as it has axial symmetry.

2.2 Local Field Enhancement Factor (FEF) at
the apex

Once the Al values are known, one can use it and build the entire potential as
in (2.0.1). Having the potential, the local FEF can be calculated.

The Field Enhancement Factor at the apex γa, is defined as the magnitude
of the local electric field at the apex of the surface Ea, divided by the external
field E0.

Ea = −∂V
∂r

∣∣∣
θ=0

= E0 +

∞∑
l=0

(l + 1)
Al
rl+2

Therefore, the FEF:

γa =
Ea
E0

= 1 +

∞∑
l=0

Ãl
l + 1

rl+2
(2.2.1)

In equation (2.2.1) it was assumed two things: (1) the surface’s tangent
plane at the apex coincides with the xy-plane, hence why the field only has a z-
direction. (2) The apex of the surface is located at the z-axis. If both conditions
are not met, the full gradient (with radial, polar, and azimuthal terms), must
be taken, as opposed to an ordinary derivative in r. Thus, the apex field Ea
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depends on the radial variable r, which, in this case, should be how far the apex
of the surface is from the origin. In summary, in both formulas above, the apex
is located at cartesian coordinates (0, 0, r). For an sphere of radius R, then,
r = R. For a revolution ellipse with radius R and height h, then, r = h. In case
of a HCP surface, r = `+R = h.

2.3 Physical interpretation

The Al terms of the Legendre expansion are associated with the 2l-multipole
moments. Thus, what is really happening, is a multipole expansion. The linear
system (2.0.6) is choosing the multipole coefficients such that it better meets
the boundary conditions. As for an example on the multipole l = 0, an image
charge can be located by means of Gauss Law taken in a sphere P in which S is
completely inside the sphere. All one has to do is to derive (2.0.1) with respect
to r, and then:

Q

ε0
=

∫
P

E · dS = −
∫ π

0

∫ 2π

0

∂V

∂r
r2 sin θdrdθ = 4πA0

Thus, the A0 term is associated with the zeroth-multipole coefficient (a sim-
ple image charge), located at the center of the coordinate system. The term
A1 is associated with a dipole moment, also located at the center. A2 with a
quadrupole moment, and so on.

In fact, an axially symmetric multipole expansion (written below) can be
compared with the electrostatic potential (2.0.1), and thus, a relation with Al
and Ql is possible:

V (r, θ) =
1

4πε0

∞∑
l=0

Ql
rl+1

Pl(cos θ) =⇒ Ql = 4πε0Al (2.3.1)

In which, for an axially symmetric shape:

Ql =

∫
S

σ(r)rlPl(cos θ)dS(r) (2.3.2)

Where σ is the charge density on the surface, which, is induced by the
presence of the external field E0.

Furthermore, because (2.0.6), the values Ãl are independent on the external
field E0. It was defined that Ãl = Al/E0, and, the values of Al are the ones
that actually appear in the electrostatic potential (2.0.1). Because Al related
to the multipoles Ql by (2.3.1), then:

Ql = 4πε0E0Ãl (2.3.3)

Where Ãl depends only on the geometry of the system. In other words, the
multipole moments scale linearly with E0. If one doubles the external field, all
multipole moments will double.
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Chapter 3

Application of the method

3.1 Half-Sphere over plane

As the method was just explained, one can test it in a simple shape, such as,
a half-sphere with radius R centered at the origin, on top of the conducting
plane z = 0, and to calculate the apex FEF. By symmetry, this is equivalent of
considering a sphere, and no plane, as the potential in the whole space won’t be
changed. Therefore, instead of integrating the half-sphere and the plane (which
is infinite in size), the integration will be made on a whole sphere, and no plane,
because the area of a sphere is finite, as opposed to a plane. The solution will
be equivalent to both problems, of course. In addition, about the HCP model,
setting h = R, that is, ν = h/R = 1, is equivalent to the sphere problem.
Furthermore, a prolate spheroid with ν = h/R = 1 is also equivalent to the
sphere problem. Thus, solving the sphere also gives the results for a HCP ν = 1
and a spheroid of ν = 1.

3.1.1 Spherical G-Integrals

To solve the problem, the Al values are required, and, to calculate those, the
Gl and Iij values are required. First, the G-integrals:

Gl =

∫
S

r−lPl(cos θ) cos θdS =

∫ π

0

∫ 2π

0

R−lPl(cos θ) cos θR2 sin θdθdφ (3.1.1)

If x = cos θ, and using the fact that (2l+1)xPl(x) = (l+1)Pl+1(x)+lPl−1(x),
then:

Gl = 2πR−l+2

∫ 1

−1
xPl(x)dx = 2πR−l+2

[
l + 1

2l + 1

∫ 1

−1
Pl+1(x)dx+

l

2l + 1

∫ 1

−1
Pl−1(x)dx

]
(3.1.2)

By orthogonality of the Legendre polynomials, and using the fact that 1 =
P0(x) which is also a Legendre polynomial, one can finally get the value of the
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G-integrals:

Gl =
4

3
πRδl,1 (3.1.3)

Where δi,j = 0 if i 6= j, and δi,j = 1 if i = j.

3.1.2 Spherical I-Integrals

Now, doing the same with the I-Integrals:

Iij =

∫
S

ri−j−2Pi(cos θ)Pj(cos θ) =

∫ π

0

∫ 2π

0

R−i−j−2Pi(cos θ)Pj(cos θ)R2 sin θdθdφ

(3.1.4)
Again, doing substitution x = cos θ, and using orthogonality of Legendre

polynomials:

Iij = 2πR−i−j
∫ 1

−1
Pi(x)Pj(x)dx =

2π

Ri+j
2

2j + 1
δi,j (3.1.5)

3.1.3 A-Vector

The infinite I-matrix is diagonal, more, among the G-Vector, only G1 is nonzero.
Thus, all relevant values are:

I11 =
4π

3R2
, G1 =

4

3
πR (3.1.6)

Therefore, solving the system (2.0.6), one gets:

∞∑
n=0

IlnÃn = Gn =⇒ InnÃn = Gn =⇒ I11Ã1 = G1 (3.1.7)

Therefore:

Ã1 =
G1

I11
= R3, Ãn 6=1 = 0 (3.1.8)

3.1.4 Solution

Writing the expression for the potential at (2.0.1) considering An 6=1 = 0, then:

V (r, θ) = −E0r cos θ +
A1

r2
cos θ = E0

(
r − R3

r2

)
cos θ (3.1.9)

Which coincides with the well-known analytical result for the sphere in an
external field [15]. The FEF can be calculated by expression (2.2.1), that is:

γ = 1 +

∞∑
l=0

Ãl
l + 1

rl+2
= 1 + Ã1

1 + 1

R1+2
= 1 + (1 + 1)

R3

R3
= 1 + 1 + 1 = 3 (3.1.10)
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3.2 Half Prolate Spheroid over plane

The method worked with a hemisphere over a plane: next step would be to
consider a spheroid. A spheroid is by definition an ellipsoid of revolution. With
respect the z-axis, the spheroid can be elongated or flattened. An elongated
spheroid is called a prolate spheroid, while, a flattened spheroid is called an
oblate spheroid.

The intersection of the spheroid across the plane z = 0 forms a circle of
radius R. The intersection of the spheroid across the plane y = 0 (or x = 0)
forms an ellipse of semi-major axis h. The height of the spheroid is thus h.
Given the shape of interest is in the case h ≥ R, by definition, such shape is a
prolate spheroid. The aspect ratio of a prolate spheroid is defined as ν = h/R.

Again, just like it was done with the sphere, the half prolate spheroid over
a conducting plane is equivalent to a full prolate spheroid, with no plane. The
advantage of the later is clear from the fact that, a plane has infinite surface
area, while, a spheroid has not, thus, all integrations will be finite. As before,
one should calculate the G-vector, the I-matrix, then A-vector, and then, the
local FEF.

3.2.1 Spheroidal G-Integrals

The G-integral:

Gl =

∫
S

r−lPl(cos θ) cos θdS (3.2.1)

The G integral was calculated for a sphere, and thus, to avoid confusion, a
different notation is employed: from now on, Ġl (with the dot on top), will be
denoted to exclusively speak about the G integral on a spheroid. In fact, every
dotted quantity will be speaking about a spheroid.

To solve the integrals, two quantities are required: r and dS, that is, the
values of r(θ, φ) which coincides with a prolate spheroid, and, the area element J ,
such that dS = Jdθdφ. A detailed derivation of both can be found in Appendix
A, where the final results are in equations (A.3.3) and (A.3.6), written below:

r =
R√

1− ε2 cos2 θ
, ε2 = 1− R2

h2
, J = r2 sin θ

√
1 +

r4

R4
ε4 cos2 θ sin2 θ

(3.2.2)
One can identify ε as the first eccentricity of the ellipse which generated the

spheroid. Therefore 0 ≤ ε < 1, and, if ε = 0, then, the spheroid collapses into a
sphere, as R = h.

Inserting equation (3.2.2) into equation (3.2.1), one can get (B.1.1) [located
in Appendix B], written below:

Ġl =

∫ 2π

0

∫ π

0

r−lPl(cos θ) cos θ · r2 sin θ ·
√

1 +
r4

R4
ε4 cos2 θ sin2 θdθdφ (3.2.3)
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Therefore, integrating at φ:

Ġl = 2π

∫ π

0

r−l+2Pl(cos θ) cos θ sin θ

√
1 +

r4

R4
ε4 cos2 θ sin2 θdθ (3.2.4)

Like before, substitution x = cos θ is done, thus arriving at equation (B.1.10)
[located in Appendix B], written below:

Ġ2l+1 =
2π

R2l−1

∫ 1

−1
xP2l+1(x)

[
1− ε2x2

]l−1/2 ·√1 +
ε4x2(1− x2)

(1− ε2x2)2
dx (3.2.5)

Where G2l = 0. Only terms of the form 2l + 1 contributes with the G-
Vector. All others are zero. Integral above can be solved exactly, and it is done
in Appendix B, as shown in equation (B.1.16), written below for convenience:

Ġ2l+1 =
2π

R2l−1

∞∑
n=0

l∑
k=0

(−1)na2l+1,2k+1

(
l − 1

2

n

)
ε2nA2(k+n+1) (3.2.6)

Where A2n is the 2n-th moment of the square root part of the integrand,
that is:

A2n =

∫ 1

−1
x2n

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx (3.2.7)

The moments A2n can be solved exactly using hypergeometric functions.
Also, al,k are the coefficients of the Legendre polynomials, that is, Pl(x) =∑
k al,kx

k. And
(·
·
)

is the generalized binomial coefficient as defined in (B.1.12)
[located at Appendix B]. The level of sophistication is unnecessary, as such
moments can be approximated by Taylor expansion. The calculation is done in
Appendix B, and the final result can be found in (B.1.26).

Finally, thus, the expression of the G integrals for a prolate spheroid, are:

Ġ2l+1 ≈
2π

R2l−1

∞∑
n=0

(−1)n
(
l − 1

2

n

)
ε2n

l∑
k=0

a2l+1,2k+1

[
1

n+ k + 1 + 1
2

+
ε4

2

1

n+ k + 1 + 3
2

]
(3.2.8)

From it, inserting l = 0, one can get G1, by using a1,1 = 1 because P1(x) = x.

Ġ1 = 2πR

∞∑
n=0

(−1)n
(
l − 1

2

n

)
ε2na1,1

[
1

n+ 1 + 1 + 1
2

+
ε4

2

1

n+ 1 + 1 + 3
2

]
(3.2.9)

Furthermore, one can further approximate Gl, for instance, if the prolate
spheroid is not elongated much, that is, if the ε ≈ 0, then, higher powers of ε
becomes closer to zero, allowing the possibility of truncation of the summation
as a tool for approximation. For powers of ε0, that is, n = 0 truncation, yields:

Ġ2l+1 ≈
2π

R2l−1

l∑
k=0

a2l+1,2k+1

(
l − 1

2

)
1

k + 1 + 1
2

(3.2.10)
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Truncating at powers of ε2:

Ġ2l+1 ≈
2π

R2l−1

l∑
k=0

a2l+1,2k+1

[
1

k + 1 + 1
2

− ε2
(
l − 1

2

)
1

k + 2 + 1
2

]
(3.2.11)

An example:

Ġ1 = 2πRa1,1

[
1

0 + 1 + 1
2

− ε2
(

0− 1

2

)
1

0 + 2 + 1
2

]
= 2πR

[
2

3
+
ε2

5

]
(3.2.12)

Which can be re-written:

Ġ1 =
4

3
πR

[
1 +

3

10
ε2 +O(ε4)

]
(3.2.13)

Comparing with (3.1.6), the G1 found is exactly the sphere’s G1, corrected
by an eccentricity. Such expression is suitable for small ε.

3.2.2 I-Integrals

The same way that was done with the G-integrals, it will be done with the
I-integrals. Inserting the r(θ) and J , and integrating on φ, equation (B.2.1)
[located at Appendix B] is obtained, written below:

İij = 2π

∫ π

0

r−i−jPi(cos θ)Pj(cos θ) sin θ

√
1 +

r4

R4
ε4 cos2 θ sin2 θ · dθ (3.2.14)

And then doing substitution x = cos θ, one arrives at expression (B.2.3),
written below:

İij =
2π

Ri+j

∫ 1

−1
Pi(x)Pj(x)

[
1− ε2x2

] i+j
2

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx (3.2.15)

As with the G-integrals, there are parity considerations to make: Iij = 0 iff
i+ j is odd. And, of course, Iij 6= 0 iff i+ j is even. The integral above has an
analytical solution as shown by equation (B.2.6), shown below:

İij =
2π

Ri+j

i∑
u=0

j∑
v=0

i+j
2∑

n=0

(−1)nai,uaj,v

( i+j
2

n

)
ε2nAu+v+2n (3.2.16)

Using (B.1.25) for the purpose of approximations, one gets (B.2.7), shown
below:

İij =
2π

Ri+j

i∑
u=0

j∑
v=0

i+j
2∑

n=0

(−1)nai,uaj,v

( i+j
2

n

)
ε2n

[
1

n+ u+v
2 + 1

2

+
ε4

2

1

n+ i+v
2 + 3

2

]
(3.2.17)
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With above expression, the value of İ11:

İ11 =
2π

R2

1∑
n=0

(
1

n

)
ε2n
[

1

n+ 1+1
2 + 1

2

+
ε4

2

1

n+ 1+1
2 + 3

2

]
(3.2.18)

Re-writing:

İ11 =
2π

R2

[
2

3
+

2

5
ε2 +

1

5
ε4 +

1

7
ε6
]

(3.2.19)

Which, neglecting some terms:

İ11 =
4π

3R2

[
1 +

3

5
ε2 +O(ε4)

]
(3.2.20)

Which, again, as comparing with (3.1.6), gives exactly the same for a sphere,
except, a correction for the eccentricity.

3.2.3 A-Vector

Having expressions for Gl and Iij , the values of Al can be found by means of
(2.0.6). Again, Gl = 0 iff l is even, and Iij = 0 iff i + j is odd. Therefore, the
linear system (2.0.6) becomes:

I00 0 I02 0 I04 0 I06 0 · · ·
0 I11 0 I13 0 I15 0 I17 · · ·
I20 0 I22 0 I24 0 I26 0 · · ·
0 I31 0 I33 0 I35 0 I37 · · ·
I40 0 I42 0 I44 0 I46 0 · · ·
0 I51 0 I53 0 I55 0 I57 · · ·
I60 0 I62 0 I64 0 I66 0 · · ·
0 I71 0 I73 0 I75 0 I77 · · ·
...

...
...

...
...

...
...

...
. . .





Ã0

Ã1

Ã2

Ã3

Ã4

Ã5

Ã6

Ã7

...


=



0
G1

0
G3

0
G5

0
G7

...


(3.2.21)

The main linear system above is separated into two different linear systems,
completely equivalent to the first: a system for odd components, and another
for even components, as written below:

I00 I02 I04 I06 · · ·
I20 I22 I24 I26 · · ·
I40 I42 I44 I46 · · ·
I60 I62 I64 I66 · · ·
...

...
...

...
. . .




Ã0

Ã2

Ã4

Ã6

...

 =


0
0
0
0
...

 (3.2.22)


I11 I13 I15 I17 · · ·
I31 I33 I35 I37 · · ·
I51 I53 I55 I57 · · ·
I71 I73 I75 I77 · · ·
...

...
...

...
. . .




Ã1

Ã3

Ã5

Ã7

...

 =


G1

G3

G5

G7

...

 (3.2.23)
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Notice the system (3.2.22) is a linear system of the form IA = 0. If I
is non invertible (there is, if det I = 0), then there exists non-null solution
A. Furthermore, if A is a solution, then cA is also a solution, for any scalar
c ∈ R. Thus, there exists infinite solutions, all belonging to the kernel of I.
In such situation, even valued A wouldn’t be unique, violating the uniqueness
theorem of the Laplace Equation. Therefore, such possibility is discarded, even
if a formal proof is not offered about if matrix I is indeed singular. Therefore,
A2l = 0, l ∈ {0, 1, 2, 3, 4, 5, ...}.

Becaused A2l = 0, only A2l+1 will be relevant, and they will be given by
the system on (3.2.23). This means, only odd valued multipoles will contribute
to the potential field: dipole, octopole, etc. Even valued multipoles will give a
zero contribution (that is, image charge, quadrupole moments, etc).

3.2.4 Local FEF

All that is missing is to find the values of the Al. Already knowing A0 = 0, and
truncating (3.2.23) for a one dimensional system. Therefore:

Ã
(1)
1 =

G1

I11
(3.2.24)

Substituting (3.2.13) and (3.2.20) at above equation, one gets:

Ã
(1)
1 = R3 1 + 3

10ε
2

1 + 3
5ε

2
(3.2.25)

Inserting A
(1)
1 at (2.2.1), and because A

(1)
l = 0 for l > 1, then:

γ(1)a = 1 +

∞∑
l=0

Ã
(1)
l

l + 1

rl+2
= 1 + Ã

(1)
1

1 + 1

r1+2
= 1 + Ã

(1)
1

2

r3
(3.2.26)

Knowing the value of A
(1)
1 , only r is required, which is the radial position at

the apex of the shape, that is, r = h. Therefore:

γ(1)a = 1 + 2
R3

h3
1 + 3

10ε
2

1 + 3
5ε

2
(3.2.27)

One can see, above expression only depends on the aspect ratio ν, because
ε can be written in function of ν.

It is important to realize at this point all approximations used: An infinite
linear system was truncated to one dimension, such that, only dipole contribu-
tions to the local FEF are being computed. More, the eccentricity terms on
numerator and denominator were truncated until ε2 order, and, the values of
A2n where approximated by a second order Taylor expansion. All approxima-
tions used are suitable if ε� 1, which is equivalent to R ≈ h, which is equivalent
to ν ≈ 1.
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3.2.5 Numerical Calculations

The method was used to numerically calculate γ
(n)
a (see Fig. (3.1a)) for a prolate

spheroid of height and radius h and R, respectively. It was found the error from
the analytical apex FEF γa was able to be curved-fitted into an exponential
function (see Fig (3.1b)):

γa − γ(n)a

γa
= A exp (−bn) , b > 0

Here, n is the truncation order, and γ
(n)
a is the local FEF calculated at order

n. The γa used here, is the exact theoretical value, which can be found in
equation (26) of [14], written below:

ν =
h

R
, ξ =

√
ν2 − 1, γa =

ξ3

ν ln (ν + ξ)− ξ
(3.2.28)

At the table below, it is shown for various aspect ratios the fitting parameters
A and b. For instance, when ν = 2 then A ≈ 0.723 and b = 0.05086. Using 1/b ≈
19.658, it is concluded that, by increasing the order by roughly 20, the error
decreases by 1/e. Assuming such behavior continues forward, one can calculate
the order required to numerically calculate the FEF given some precision.

Shape A b 1/b
h = 1.1 0.332 0.821 1.218
h = 1.3 0.499 0.355 2.8169
h = 1.5 0.598 0.1896 5.2742
h = 1.7 0.656 0.1080 9.2592
h = 2 0.723 0.05086 19.652
h = 3 0.851 0.006964 143.584
h = 5 0.937 0.0006493 1539.93
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Figure 3.1: (a) γ
(n)
a vs truncation order n for various aspect ratios. The hori-

zontal dashed lines correspond to the analytical values of the apex FEF γa. (b)

Error
γa−γ(n)

a

γa
× 100(%) vs n, for the same aspect ratios as shown in (a). The

horizontal plateau observed for ν = 1.1 might be explained by the fact that the
numerical integration in A2n (see Eq. (3.2.7)) was made with 106 trapezoidal
elements.
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3.2.6 Slow convergence

As Fig. (3.1) shows (and the values of 1/b), that, a slow convergence of the
FEF is observed as the aspect ratio ν = h/R increases. The reason for this,
the hemi-ellipsoid concentrates its charge distribution on the top. Therefore, it
can be approximated as a charge on the top, and its respective image charge
(opposite in sign) below the plane. It was shown in (2.3.1) that the coefficients
Ãl are proportional to the multipole coefficients Ql of the system.

For a single charge q located in the z-axis, above the plane at a distance a,
that is, (0, 0, a), then, the axial multipole moments are known to be Ql = qal.
Because of the image charge below, the total multipole is:

Ql = qal + (−q) · (−a)l = qal + (−1)l+1qal (3.2.29)

In other words:

Q2l = 0

Q2l+1 = qa2l+1
(3.2.30)

It is clear that Ql grows with the power l. The potential for a multipole
Ql is proportional to 1/rl+1, and the field as 1/rl+2. At the apex, r = h, and
a < h but a ≈ h, therefore, for sake of illustration, using expression (2.2.1),
considering in a rough way that Ql ≈ aql for all l, then:

γa ≈ 1 +

∞∑
n=0

(l + 1)
qal

hl+2
= 1 +

1

h2

∞∑
n=0

(l + 1)q
(a
h

)l
(3.2.31)

Because a/h ≈ 1 (and a/h < 1), the convergence is slow. Such result also

predicts that, for some small fixed n, then, γ
(n)
a → 1 as h increases. In general,

the larger h is, the more orders are required to correctly approximate γa.
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Chapter 4

Hemisphere on a post
model

Having shown how the method works for shapes with known FEFs, now, the
HCP model will be focused, analytically, using the former method. The HCP
model consists of a conducting cylinder of radius R and height ` on top of a
conducting plane located at z = 0. On top of the cylinder, there’s a hemisphere
of radius R. It would be required to integrate the hemisphere, the cylinder, and
the plane (with a circular hole at the center), however, that won’t be necessary:
An equivalent problem is posed by eliminating the plane, and considering an
mirror shape down below, as if the plane is a mirror. Thus, now there exists a
cylinder of radius R, but with height 2`, with ` of height on the positive z axis,
and ` of height on the negative z-axis, and two hemispheres: one located on top
of the cylinder, and the other at the bottom of the cylinder. These are easier
to integrate, because their area is finite. This will define a HCP shape of height
h = `+R, and height to radius ratio of ν = h/R.

4.1 Aspect Ratio ν

The aspect ratio ν is defined as the ratio between the height and radius of the
HCP shape. That is:

ν =
h

R
(4.1.1)

It will be motivated in this section, that, it makes sense to have the FEF
depending only on ν.

Assume two HCP shapes denoted by (h1, R1) and (h2, R2), such that, both
shapes have an equal aspect ratio ν. This implies:

ν1 =
h1
R1

=
h2
R2

= ν2 (4.1.2)
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The only way to meet such criteria, is having: h2 = αh1, and R2 = αR1, for
some α ∈ R where α > 0. Thus, this represents an scale by α. Therefore, a way
to transform from shape (h1, R1) to shape (h2, R2) where ν(h1, R1) = ν(h2, R2),
is by scaling the entire coordinate system (x, y, z)→ (αx, αy, αz).

One can verify what happens to the Laplacian operator applied over a generic
function φ when such scale transformation is applied. By defining r′ = αr, then:

∂φ

∂x′
=

∂x

∂x′
∂φ

∂x
=

1

α

∂φ

∂x
(4.1.3)

And:
∂2φ

∂x′2
=

∂

∂x′
1

α

∂φ

∂x
=

1

α

∂x

∂x′
∂2φ

∂x2
=

1

α2

∂φ

∂x2
(4.1.4)

The same can be done for y, z, and, therefore, ∇2φ = α2∇′φ. Thus, if
Laplace equation is satisfied:

∇2φ = 0 ⇐⇒ ∇′2φ = 0 (4.1.5)

Therefore, if φ(x) is a solution of Laplace equation, so is φ(αx). If ψ(r)
be the analytical solution of the HCP shape (h,R), that is, ψ satisfies Laplace
equation, and boundary conditions (h,R), then, ψ(αr) is a solution of Laplace
equation, and satisfies boundary conditions (αh, αR).

If ψ depends only on ν and the position vector r, as opposed to h and R
separately, then it is clear that the scaling conditions are immediately satisfied.
This highlights the importance of the aspect ratio ν. It is expected that all
quantities (G-integrals, I-integrals, A-values, and the apex FEF) will depend
explicitly on the aspect ratio ν.

4.2 Integrals

4.2.1 Cylindrical I-Integrals

The integral to solve:

Iij =

∫
S

r−i−j−2Pi(cos θ)Pj(cos θ)dS (4.2.1)

Where S is a cylinder with height 2` and radius R. Recall that r is a radial
vector, as in spherical coordinate system. For a cylinder, from Appendix A, it
satisfies equation:

r =
R

sin θ
, J = r2 (4.2.2)

Where J is the area element, that is, dS = Jdθdφ. The limits of integration
are from θ0 (the top of the cylinder) to π−θ0, the bottom of the cylinder, where:

ac = cos θ0 =
`

r0
, as = sin θ0 =

R

r0
, r0 =

√
R2 + `2 (4.2.3)
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A detailed derivation is in Appendix A. The integral is thus:

Ïij =

∫
S

r−i−j−2Pi(cos θ)Pj(cos θ)dS =

∫ 2π

0

∫ π−θ0

θ0

r−i−j−2Pi(cos θ)Pj(cos θ)r2dθdφ

(4.2.4)
Thus:

Ïij =
2π

Ri+j

∫ π−θ0

θ0

Pi(cos θ)Pj(cos θ) [sin θ]
i+j

dθ (4.2.5)

Or, changing x = cos θ:

Ïij =
2π

Ri+j

∫ ac

−ac
Pi(x)Pj(x)

[√
1− x2

]i+j−1
dx (4.2.6)

First, the function
√

1− x2 is always even. Second, if i+j is even, then PiPj
is even. Also, if i+ j is odd, then PiPj is odd. Because the limits of the integral
are symmetrical, then an odd function must be evaluated to zero. Therefore,
Iij = 0 if i+ j is odd.

Now, if one wishes to calculate specific values:

Ï00 = 2π

∫ π−θ0

θ0

dθ = 2π (π − 2θ0)

Ï11 =
2π

R2

∫ π−θ0

θ0

cos2 θ sin2 θdθ

(4.2.7)

The integrals in θ where used for I00 and I11, because they are easier to solve
than the integrals in the variable x.∫

[sin θ cos θ]
2
dθ =

1

4

∫
sin2 (2θ) dθ =

1

8

∫
[1− cos (4θ)] dθ (4.2.8)

Thus: ∫
sin2 θ cos2 θdθ =

1

8
θ − 1

32
sin (4θ)

=
1

8
θ − 1

16
sin (2θ) cos (2θ)

=
1

8
θ − 1

8
sin θ cos θ

(
cos2 θ − sin2 θ

) (4.2.9)

Or, defining r20 = `2 +R2, then:

Ï11 =
2π

R2

[
π

8
− 1

4
arccos

(
`

r0

)
+

1

4

R`

r20

(
`2

r20
− R2

r20

)]
(4.2.10)

Or, re-writing both:

Ï00 = 2π

[
π − 2 arccos

(
`

r0

)]
Ï11 =

2π

R2

[
π

8
− 1

4
arccos

(
`

r0

)
+

1

4

R`

`2 +R2

`2 −R2

`2 +R2

] (4.2.11)
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If ` = 0, then Ï00 = Ï11 = 0, because, arccos(0) = π/2. Expansion of arccos
is:

arccos(x) =
π

2
− x− x3

6
− 3x5

40
+O(x7) (4.2.12)

Thus, inserting the expansion into (4.2.11), it becomes, for `� R:

I00 =
4π`

r0

Ï11 =
π

2R2

[(
`

r0

)
+

R`

`2 +R2

`2 −R2

`2 +R2

] (4.2.13)

4.2.2 Cylindrical G-Integrals

The integral to solve:

Gl =

∫
S

r−lPl(cos θ) cos θdS, (4.2.14)

The same recipe will be followed, substituting r and writing dS = r2dθdφ.
Thus:

G̈l =

∫ 2π

0

∫ π−θ0

θ0

r−lPl(cos θ) cos θr2dθdφ = 2π

∫ π−θ0

θ0

(
R

sin θ

)−l+2

Pl(cos θ) cos θdθ

(4.2.15)
Therefore, finalizing:

G̈l = 2πR−l+2

∫ π−θ0

θ0

Pl(cos θ) [sin θ]
l−2

cos θdθ (4.2.16)

As before, applying substitution x = cos θ:

G̈l = 2πR−l+2

∫ ac

−ac
x
[√

1− x2
]l−3

Pl(x)dx (4.2.17)

Function
√

1− x2 is always even. If l is odd, then xPl is even. If l is
even, then xPl is odd. Because the integral limits are symmetric, if the entire
integrand is odd, then the integral must evaluate to zero, which happens when
l is even. Thus, G̈2l = 0.

One can now calculate the value of G1.

G̈1 = 2πR

∫ ac

−ac

x2

1− x2
dx = 2πR [arctanh(x)− x]

ac
−ac (4.2.18)

Where substitution x← tanhx was done to solve the integral. Therefore:

G̈1 = 4πR

[
arctanh

(
`

r0

)
− `

r0

]
(4.2.19)
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If it is the case that ` � R, then ac � 1, meaning, the Taylor expand
arctanh would be good approximation.

arctanh(x) = x+
x3

3
+
x5

5
+O(x7) (4.2.20)

Therefore, for `� R, expression (4.2.19) can be written:

G̈1 =
4

3
πR

[(
`

r0

)3

+
3

5

(
`

r0

)5

+ · · ·

]
(4.2.21)

4.2.3 Hemispherical area element

Expression (A.4.7), as derived at Appendix A, show the area element of the
hemisphere:

J = r2 sin θ

√√√√1 +
`2

r2
sin2 θ

(
1 +

` cos θ√
R2 − `2 sin2 θ

)2

(4.2.22)

Where r is shown in expression (A.4.5) [also in Appendix A], written below:

r = ` cos θ +
√
R2 − `2 sin2 θ (4.2.23)

In above equation, the value of ` is signed: ` > 0 for the hemisphere above
the z-axis, and ` < 0 for the hemisphere below the z-axis.

The area element J can be approximated as follows: if `� R (also h� R),
as in (A.4.11), then:

J = r2 sin θ

√
1 +

`2

r2
`2 cos2 θ sin2 θ

R2 − `2 sin2 θ
,

`

R
� 1 (4.2.24)

On the other hand, if `� R, as in (A.4.13), then:

J = r2 sin θ

√
1 +

`2

r2
sin2 θ

`

R
� 1 (4.2.25)

4.2.4 Suspended hemispherical G-Integrals

Recalling dS = Jdθdφ where (A.4.11) shows the value equation for J . Recall
the integral to solve:

G̊l =

∫
S

r−lPl(cos θ) cos θdS

Inserting the exact J in expression above, and doing parity considerations,
just like it was done with the prolate spheroid, the integral can be simplified as
in equation (C.1.11) [located in Appendix C], written below:

G̊2l = 0

G̊2l+1 = 4π

∫ 1

`/r0

r−2l+1P2l+1(x)xJAdx
(4.2.26)
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Where:
r20 = `2 +R2, J = r2 sin θJA (4.2.27)

Therefore, just like the prolate spheroid, a suspended hemisphere also has
Gl = 0 if l is even. About solving for the odd values of l, above integral
is still too complicated for a direct substitution of r and J . If ` = 0, the
calculations reduces to the case of the sphere, which was solved exactly using
this method, and found that a single dipole describes the entire field. It is
expected, that, higher deviations from the spherical shape will cause more and
more contributions of multipole elements. With that in mind, it makes sense to
consider ` � R: in this condition, the dipole is still the dominant coefficient,
and higher multipole contributions will probably be small.

With that in mind, one can Taylor expand the integral rnPl(x)xJA around
the center ` = 0 until second order, and simplify above integral to the expression
written at (C.2.32) [detailed calculations at Appendix C] case, written below:

Gl = 4πR−l+2

∫ 1

`/r0

Pl(x)xdx

+ 4π(−l + 2)R−l+1`

∫ 1

`/r0

Pl(x)x2dx

+ (l2 − 4l + 2)
4π

Rl
`2
∫ 1

`/r0

x3Pl(x)dx

+
4lπ

Rl
`2
∫ 1

`/r0

xPl(x)dx

(4.2.28)

These integrals are easier to solve, requiring only the calculations of moments
of Legendre polynomials, and this can be solved exactly. For instance, expression
(C.2.35) [located at Appendix C] is the result of the first moment of Legendre
polynomials Pl. A description of how to calculate higher moments can be found
in Appendix C. Nevertheless, the final analytic solutions for a general Gl are
big and complicated, and, they do not provide intuitive grounds to base the
analysis. Furthermore, solutions of moments of PiPj , required for Iij , are not
known. Thus, even if one writes complete expressions for Gl, the Iij would still
be lacking, rendering the Gl expressions useless.

With all of that in mind, one can find specific values of l, which will be
done for G0 and G1. It is already known from expression (4.2.26) that G0 = 0.
Solving (4.2.26) for l = 1 yields the expressions (C.2.39) [located at Appendix
C], written below:

G1 =
4

3
πR

[
1−

(
`

r0

)3
]

+ π`

[
1−

(
`

r0

)4
]

− 4π

5R
`2

[
1−

(
`

r0

)5
]

+
4π

3R
`2

[
1−

(
`

r0

)3
] (4.2.29)
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Just like one could anticipate, if ` = 0, the value ofG1 becomes the calculated
value for the sphere, that is 4/3πR, as can be seen in equation (3.1.3). The other
terms, are the Taylor corrections for low values of `.

For the case where `� R, a calculation of G1 can also be found in Appendix
C.

4.2.5 Suspended hemispherical I-Integrals

Recall the I-Integral at (2.0.4), that is:

I̊ij =

∫
S

r−i−j−2Pi(cos θ)Pj(cos θ)dS (4.2.30)

As before, substitute area element dS = Jdθdφ, and thus:

I̊ij =

∫ 2π

0

∫ θ0

0

r−i−j−2Pi(cos θ)Pj(cos θ)Jdθdφ (4.2.31)

The same procedure that was done for the Gl integrals can be done to
calculate Iij . It is shown in expression at Appendix C, (C.1.16), exact expression
for the Iij integrals, shown below:

I̊ij = 4π

∫ 1

`/r0

r−i−jPi(x)Pj(x)JAdx, i+ j ∈ {0, 2, 4, 6, 8, . . . } (4.2.32)

And Iij = 0 otherwise. Again, doing a Taylor expand around ` = 0, where
detailed derivation is at Appendix C, final result can be found in equation
(C.2.40), written below:

I̊ij =
4π

Ri+j

∫ 1

`/r0

Pi(x)Pj(x)dx

− (i+ j)
4π

Ri+j+1
`

∫ 1

`/r0

xPi(x)Pj(x)dx

+
[
(i+ j)2 − 2

] 4π

Ri+j+2
`2
∫ 1

`/r0

x2Pi(x)Pj(x)dx

+ [(i+ j) + 2]
4π

Ri+j+2
`2
∫ 1

`/r0

Pi(x)Pj(x)dx

(4.2.33)

Given I̊01 = I̊10 = 0 because 1 + 0 is odd, expressions (C.2.44) and (C.2.46)
[also at Appendix C] show the values of I̊00 and I̊11, written below:

I̊00 = 4π ·
[
1− `

r0

]
− 8π

3R2
`2

[
1−

(
`

r0

)3
]

+
8π

R2
`2
[
1− `

r0

]

I̊11 =
4π

3R2

[
1−

(
`

r0

)3
]
− 2π

R3
`

[
1−

(
`

r0

)4
]

+
8π

5R4
`2

[
1−

(
`

r0

)5
]

+
16π

3R4
`2

[
1−

(
`

r0

)3
]

(4.2.34)
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It is relevant to notice yet agin again, how they generalize the values found
for the sphere (` = 0) at equation (3.1.5), namely:

I00 = 4π, I11 =
4π

3R2
(4.2.35)

4.3 HCP Integrals

With all of that, one can come up with the HCP Integrals. The HCP shape
is composed of a hemisphere of radius R on top of a cylinder of length ` in a
plate. It was already discussed that, it was much better to, instead, compute
the equivalent problem of a hemisphere of radius R on top of a cylinder of radius
2` centered on the z-axis, and another hemisphere of radius R on the bottom
of the cylinder. That was the case when it was calculated: I̊ij and G̊l are the

integrals calculated on both hemispheres, above and below the z-axis, while Ïij
and G̈l are the integrals for a cylinder of length 2`, ` above the z-axis, and `
below the z-axis. Therefore, for a complete HCP shape:

Gl = G̈l + G̊l

Iij = Ïij + I̊ij
(4.3.1)

That is true, precisely because, for arbitrary function f is valid:∫
HCP

fdS =

∫
Suspended Hemispheres

fdS +

∫
2`-length Cylinder

fdS (4.3.2)

4.4 HCP Multipoles

Notice that, it was proved for the exact case, that, G̈2l = G̊2l = 0. In addition,
Ïij = I̊ij = 0 for i + j even. Thus, just like the case with the prolate spheroid,
the HCP linear system is as described in equation (3.2.21). It was shown in
equation (3.2.22) that, for such case, A2l = 0 for every l, and, by equation
(3.2.23) only odd l at Al contributes to the potential (2.0.1).

Hereby, using similar arguments of the prolate spheroidal case, one can con-
clude that only odd multipoles will contribute to the potential of a
HCP shape, that is, dipole, octopole, etc.

Recalling the multipole moments expression (2.3.2), if Q2l = 0, then, the
induced charge density over the surface σ has to be of a certain way.

Q2l =

∫
S

σ(r)r2lP2l(cos θ)dS(r) (4.4.1)

Because the shape is axially symmetric, integration can be done in domains
φ ∈ [0, 2π] and θ ∈ [0, π], where, the φ integral will yield 2π, thus:

Q2l = 2π

∫ π

0

σ(θ)r(θ)2l+2P2l(cos θ) sin θJA(θ)dθ (4.4.2)
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Substituting x = cos θ, then:

0 = Q2l =

∫ 1

−1
σ(x)r(x)2l+2P2l(x)JA(x)dx (4.4.3)

It was shown for a HCP shape (both cylinder and suspended hemisphere),
that r(x), JA(x) were even functions. Furthermore, P2l is even. Notice then,
that, if σ(x) is odd, then the entire integrand is odd, then all Q2l is automatically
zero. One way for that to happen, is, σ(x) being an odd function.

Theorem 4.1. If the induced charge density σ(x) is an odd function, then
Q2l = 0.

Evidently, the goal is to prove the converse, that is, if Q2l = 0, then σ(x) is
odd. That can be done, if one has an expression for Q:

Ql =

∫ 1

−1
σ(x)r(x)l+2Pl(x)JA(x)dx (4.4.4)

Notice that, expression above shows that Ql are proportional to the coeffi-
cients of the Legendre expansion of the function σ(x)r(x)l+2JA(x), that is:

r(x)l+2JA(x)σ(x) =

∞∑
n=0

2Ql
2l + 1

Pl(x) (4.4.5)

Therefore, if all Q2l = 0, it means that only odd Legendre polynomials con-
tribute to the summation, meaning r(x)l+2JA(x)σ(x) must be an odd function.
Because it is already known that r(x) and JA(x) are even, then, σ(x) must be
odd. It was thus, proven the following theorem:

Theorem 4.2. Q2l = 0 for all l ∈ N ∪ {0}, if and only if, σ(x) + σ(−x) = 0.

Recall also, that, the HCP shape was considered to be one resembling a
capsule, because of the convenience of excluding the plane from the integrals.
Therefore, σ(x), x > 0 is the distribution along the region of the hemisphere on
a post, while σ(x), x < 0 is the distribution along the region on the plane (or,
equivalently, on the mirror hemisphere on a post). This connects the charge
distributions on the plane, and on the hemisphere and the post. More formally,
the charge distribution over the plane can be calculated by means of the local
electric field solution E(r), normal to the plane.

More, if l is even, then the l-multipole of the plane is equal in magnitude,
but opposite in sign of the l-multipole of the hemisphere on a post (and thus,
both of them sum to zero). And, if l is odd, they are equal in magnitude and
in sign.

4.4.1 Line of charge model

One can seek to explore even more the result of zero even multipoles, and apply
it to other models. Let a line of charge along the z-axis, going from −a < z < a
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for some a > 0. Such a line has a distribution of linear charge density λ(z). The
axial multipoles of such a system can be calculated:

Ml =

∫ a

−a
λ(z)zldz (4.4.6)

If one is trying to approximate the potential of a HCP shape by using a
line of charge, it is clear that the even multipoles must be zero. Also, from
the expression above, if λ(z) is an odd function, the multipole condition is
automatically satisfied. That happens precisely because zl is even if l is even.
Thus, the following is valid:

Theorem 4.3. If λ(z) is the linear charge density of a line from [−a, a] is an
odd function, then the multipoles M2l = 0.

Again, one would like to prove the converse, however, the lack of orthogo-
nality of the monomials zl prevents a proof just like the surface charge density
σ(x) from a HCP shape.

Because of this, one is encouraged to choose an odd function when modeling
with a line of charge. For instance, the linear charge density in work [23] was
chosen to be an odd function.

4.5 Interacting HCPs

4.5.1 Two interacting HCPs

With two HCP shapes, separated by a distance c, it was proven there’s no image
charge (because it is the zeroth multipole, and zero is even), thus, the next
multipole contribution is extremely likely to be of a dipole. If c is large enough
as compared to the dimensions of a HCP shape, the dominant interaction will
be the dipole. With the knowledge of the dipole moment Q1 and the FEF of
an isolated γa, it is possible to calculate how much the FEF will fall.

The electric field of a dipole:

E(r) =
3(p · r̂)r̂− p

4πε0r3
(4.5.1)

Therefore, considering the multipoles exactly at the z = 0 at their respective
positions, which, without loss of generality will be considered to be (0, 0, 0) and
(c, 0, 0), the FEF is reduced to:

γ′a = γa +
E(c, 0, h) · ẑ

E0
(4.5.2)

Where E0 is the external field. Here, it was explicitly considered only the
contribution in the ẑ direction, because, the electric field at the apex must
parallel to the normal vector of the surface on the apex, which, for a HCP,
happens to be ẑ.
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The distance from the dipole to the tip of the HCP is, r =
√
c2 + h2. Fur-

thermore, it was shown earlier that all Al (and thus, all multipoles Ql) scales
linearly with the external field E0. Therefore, the new γ′a because the presence
of the other HCP shape, becomes:

γ′a = γa +
Q1

E0

3 cos(p̂, r̂)r̂− p̂

4πε0
√
c2 + h2

3 · ẑ (4.5.3)

Because p = Q1ẑ, then:

γ′a = γa +
Q1

E0

3 cos2(p̂, r̂)− 1

4πε0
√
c2 + h2

3 (4.5.4)

Where:

cos(r̂, ẑ) =
h

r
=

h√
h2 + c2

, sin(r̂, ẑ) =
c

r
=

c√
h2 + c2

(4.5.5)

Thus:

γ′a = γa +
Q1

E0

1

4πε0(c2 + h2)3/2

[
3h2

h2 + c2
− 1

]
(4.5.6)

Or, equivalently, using equation (2.3.1) connecting Q1 and A1, instead, one
can write in terms of Ã1:

γ′a = γa +
Ã1

(c2 + h2)3/2

[
3h2

h2 + c2
− 1

]
(4.5.7)

Which can also be written:

δ =
γ′a − γa
γa

= − 1

γa

Ã1

(c2 + h2)3/2

[
1− 3h2

h2 + c2

]
(4.5.8)

Therefore, δ decreases by the third power of c, until a certain value ck, and
it begins to increase again. Such value can be calculated from expression above:

3h2

h2 + c2k
− 1 = 0 ⇐⇒ ck = h

√
2 (4.5.9)

That is:

c > h
√

2 =⇒ δ < 0

c = h
√

2 =⇒ δ = 0

c < h
√

2 =⇒ δ > 0

(4.5.10)

That is, if h is comparable to the distance between the posts d, then the
variation in FEF begins to decrease, until zero is reached. It is important to
notice this treatment considered the interaction of them to be identical to two
independent dipoles.
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It is not the case that at h
√

2 the field starts decreasing, because, at such
short distances, octopole and higher multipole might contribute. However, what
was proven is: if electrostatic interactions are negligible (if the two systems can
be treated independently), then, the dipole moment contributes by decreasing
the FEF until h

√
2. In fact, it is not even clear if the independent approxi-

mation is valid for d ≈ h. Thus, what was done must be regarded as a good
approximation only for large distances c.

In fact, it was shown [20] numerical evidence that −δ ∼ c−3. From figure 3
of same paper [20], one can see that the third power law begins to fail around
ln(c/h) ≈ 1, which is not far from the range of c ≈ h

√
2, since ln

√
2 ≈ 0.35.

4.5.2 One-dimensional regular array of HCPs

Let an infinite number of HCP shapes located at positions (nc, 0, 0), where
n ∈ Z. That is, the HCPs are distributed in a single axis. The aim is to
calculate the fractional change in the apex FEF, δ. From (4.5.8), the result will
be:

−δ =
γ′a − γa
γa

=
∑
n∈Z∗

1

γa

Ã1

(n2c2 + h2)3/2

[
1− 3h2

h2 + n2c2

]
(4.5.11)

Where it was denoted Z∗ = Z − {0}. A reasonable first step would be to
simplify the expression in the summand. Notice that, as n grows larger:

3h2

h2 + n2c2
→ 0,

Ã1

(n2c2 + h2)3/2
→ Ã1

n3c3
(4.5.12)

Therefore, the sum becomes:

−δ = 2

∞∑
n=1

1

γa

Ã1

n3c3
=

2Ã1

γac3

∞∑
n=1

1

n3
=

2Ã1

γac3
ζ(3) (4.5.13)

Where ζ(n) is the Zeta-Riemann function, and ζ(3) ≈ 1.2020569 is known as
Apéry’s constant. Also, E0γa is the electric field on the top of the HCP shape.
The dependence continues to be −δ = c3. In other words:

−δ =
2Ã1

γac3
ζ(3) =

2Q1ζ(3)

4πε0E0γac3
(4.5.14)
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4.6 HCP FEF for `� R

Hereby, for ` � R, for G1, equations (4.2.21) and (4.2.29) can be summed,
written below:

G1 =
4

3
πR

[
1−

(
`

r0

)3
]

+ π`

[
1−

(
`

r0

)4
]

(hemisphere)

− 4π

5R
`2

[
1−

(
`

r0

)5
]

+
4π

3R
`2

[
1−

(
`

r0

)3
]

(hemisphere)

+
4

3
πR

(
`

r0

)3

(cylinder)

(4.6.1)

Thefore, one term of the suspended hemispherical G and cylindrical G inte-
grals cancel out.

G1 =
4

3
πR+ π`

[
1−

(
`

r0

)4
]

− 4π

5R
`2

[
1−

(
`

r0

)5
]

+
4π

3R
`2

[
1−

(
`

r0

)3
] (4.6.2)

At first order of `, the correction of G1 from the sphere case is merely π`.
The relevant value now, would be I11. Thus, one can sum (4.2.13) with

(4.2.34), then:

I11 =
4π

3R2

[
1−

(
`

r0

)3
]
− 2π

R3
`

[
1−

(
`

r0

)4
]

+
8π

5R4
`2

[
1−

(
`

r0

)5
]

+
16π

3R4
`2

[
1−

(
`

r0

)3
]

+
π

2R2

(
`

r0

)
+

π

2R2

R`

`2 +R2

`2 −R2

`2 +R2

(4.6.3)

Truncating the linear system (3.2.23) at 1× 1, then:

A1 =
G1

I11
(4.6.4)

Where, all it is required to do, is to insert (4.6.3) and (4.6.2) at equation
above. In order to simplify a little, terms of `2 can be ignored. Therefore:

A
(1)
1 ≈

4
3πR+ π`

4π
3R2 − 2π

R3 `+ π
2R2

`
r0

= R2
4
3R+ `

4
3 −

2`
R + 1

2
`
r0

(4.6.5)

Using (2.2.1), the FEF for becomes:

γ(1)a = 1 +
2A

(1)
1

(R+ `)3
= 1 +

2R2

(R+ `)3
·

4
3R+ `

4
3 −

2`
R + 1

2
`
r0

, `� R (4.6.6)
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One can see, it depends on the ratios h/R = ν, or `/R = (h−R)/R = ν−1,
therefore, it does depend explicitly only on the aspect ratio.

According to the formula above, as h increases, γa → 1 up to first order. The
reason for this is exactly the same as explained in the case of the ellipsoid: the
charge in general is concentrated on the hemisphere on top of the post, thus, the
multipoles scales Ql ≈ qal for some a < h, but a ≈ h, thus the FEF converges
slowly, as shown in equation (3.2.31) which presents a rough estimation, written
below:

γa ≈ 1 +
1

h2

∞∑
n=0

(l + 1)q
(a
h

)l
(4.6.7)
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4.7 FEF for HCP Model

For a HCP shape of radius R and total height h = R + `, where R > 0 and
` > 0, the first step is to calculate the integrals (2.0.4), written below:

Gi =

∫
S

r−iPi(cos θ) cos θdS, Iij =

∫
S

r−i−j−2Pi(cos θ)Pj(cos θ)dS

(4.7.1)
Above surface integrals simplifies to ordinary integrals as stated in equations

(4.2.17), (4.2.6), (4.2.26), (4.2.32), (4.3.1) with aid of (4.2.22), (4.2.27) (4.2.23)
where integration limits can be found from (4.2.27) and (4.2.3). All required
equations are summarized below:

Iij = I̊ij + Ïij

Gl = G̊l + G̈l
(4.7.2)

G̈l = 2πR−l+2

∫ `/r0

−`/r0
x
[√

1− x2
]l−3

Pl(x)dx (4.7.3)

Ïij =
2π

Ri+j

∫ `/r0

−`/r0
Pi(x)Pj(x)

[√
1− x2

]i+j−1
dx (4.7.4)

G̊2l+1 = 4π

∫ 1

`/r0

r−2l+1P2l+1(x)xJAdx (4.7.5)

I̊ij = 4π

∫ 1

`/r0

r−i−jPi(x)Pj(x)JA(x)dx, i+ j even (4.7.6)

JA(x) =

√√√√1 +
`2

r2
(1− x2)

(
1 +

`x√
R2 − `2(1− x2)

)2

(4.7.7)

r(x) = `x+
√
R2 − `2(1− x2) (4.7.8)

r0 =
√
R2 + `2 (4.7.9)

Where it was proved:

G̈2l = G̊2l = G2l = 0, ∀l ∈ N ∪ {0}
Ïij = I̊ij = Iij = 0, ∀i, j s.t. i+ j ∈ {1, 3, 5, 7, 9, . . . }

(4.7.10)

Once Iij and Gl are all known, solve the linear system (3.2.23), written
below: 

I11 I13 I15 I17 · · ·
I31 I33 I35 I37 · · ·
I51 I53 I55 I57 · · ·
I71 I73 I75 I77 · · ·
...

...
...

...
. . .




Ã1

Ã3

Ã5

Ã7

...

 =


G1

G3

G5

G7

...

 (4.7.11)
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Once the values Ãl are solved, one can find the potential in the overall space
by inserting the values at (2.0.1), written below:

V (r, θ) = −E0r cos θ + E0

∞∑
l=0

Ãlr
−(l+1)Pl(cos θ). (4.7.12)

Where, the FEF is expressed in equation (2.2.1), where the apex is located
at r = h, written below:

γa = 1 +

∞∑
l=0

Ãl
l + 1

hl+2
(4.7.13)

4.8 Numerical Results

Calculations have been done using the method, and truncating the linear system
(2.0.6) until n, for aspect ratios ν = h/R = 1.5 and ν = 2. For comparison,
the apex FEF was obtained numerically [Thiago Albuquerque de Assis, private
communication] by using the minimal domain size (MDS) method [17].

For ν = 1.5 and ν = 2, the apex FEF values were found to be γMDS ≈
3.62527 and γMDS ≈ 4.20577, respectively. It was found that γ

(n)
a from the

method does converge to γMDS , as shown in the plots on Fig (4.1).
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Figure 4.1: (a) The FEF γ
(n)
a is plotted against the truncation n. The dashed

line correspond to γMDS . (b) Error
γ(n)
a −γMDS

γMDS
× 100(%) is plotted against n.
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Chapter 5

General Shapes

The fact that even multopole moments were zero for the hemisphere, hemi-
ellipsoid on a plate, and the HCP shape, is no coincidence. It turns out, all
shapes which are axially symmetric, and have mirror symmetry in the xy-plane,
will have all even multipoles zero. In this chapter, this will be proved, and the
consequences explored.

5.1 Multipole Coeficients

Theorem 5.1. Let an emitter shape S under a external electrostatic field E0.
Let S be described in spherical coordinates by r(θ, φ). If a shape S has axial
symmetry, that is r(θ, φ) = r(θ), independent of φ, and, if S has mirror sym-
metry in the xy-plane, that is r(θ) = r(π − θ), then, under an uniform applied
field E0, the combined system will have all even multipoles zero.

Proof. To prove the stated theorem, it is suficient to sshow that r(x) is even,
JA(x) is even, and show the respective I and G integrals are zero. Doing
conversion x = cos θ, then, r(x) = r(−x), because cos(π − θ) = − cos θ = −x.
Therefore, r(x) is an even function.

A detailed derivation of J can be found in the Appendix A. Defining J =
JAr

2 sin θ, then:

JA(θ) =

√
1 +

(
dr

dθ

)2

(5.1.1)

Again, doing x = cos θ:

JA(x) =

√
1 +

(
dr

dx

dx

dθ

)2

=

√
1 +

(
− dr
dx

√
1− x2

)2

(5.1.2)

That is:

JA(x) =

√
1 + (1− x2)

(
dr

dx

)2

(5.1.3)
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If dr/dx is either odd or even, then JA(x) is even function. Because r(x) is
even, then r′(x) has definite parity, namely:

r(x) = r(−x) =⇒ r′(x) = −r′(−x) (5.1.4)

Thus, if r(x) is even, then r′(x) is odd, then r′(x)2 is even, then JA(x) is
even.

About the IG integrals, doing substitution x = cos θ, and recall θ ∈ [0, π]
and φ ∈ [0, 2π]. Because S has axial symmetry, nothing does depend on φ, thus
the φ integral evaluates to 2π. One is left with:

Gl =

∫
S

r−lPl(cos θ) cos θdS = 2π

∫ 1

−1
r−l+2(x)Pl(x)xJA(x)dx

Iij =

∫
S

r−i−j−2Pi(cos θ)Pj(cos θ)dS = 2π

∫ 1

−1
ri+j(x)Pi(x)Pj(x)JA(x)dx

(5.1.5)

Because r(x) is even, then rn(x) is even, for any n ∈ N. Therefore, because
the symmetrical intervals [−1, 1], and because Pn(x) has definite parity, the
entire integrand on both integrals have definite parity. If integrand is odd,
integral is zero. Then G2l = 0. And, if i + j is odd, then Iij = 0. The linear
system (2.0.6) does reduces to the same as equation (3.2.22) and (3.2.23), and
therefore, A2l = 0. Because Al is proportional with the axial multipoles as in
equation (2.3.1), then, Q2l = 0, finishing the proof.

Theorem 5.2. Let an emitter shape S under an external electrostatic field E0.
Let S be described in spherical coordinates by r(θ, φ). If a shape S has axial
symmetry, that is r(θ, φ) = r(θ), independent of φ, then the local potential is
axially symmetric, that is, V (r, θ, φ) = V (r, θ).

Proof. In general, the potential can be written:

V (r, θ, φ) = E0r cos θ +

∞∑
l=0

l∑
m=−l

Blmr
−(l+1)Ylm(θ, φ) (5.1.6)

At the surface, V = 0. Because the shape is axially symmetric, then:

V (r(θ), θ, φ) = 0 = E0r cos θ +

∞∑
l=0

l∑
m=−l

Blmr(θ)
−(l+1)Ylm(θ, φ) (5.1.7)

Because Ylm(θ, φ) = NlmPlm(cos θ)eimφ, then:

−E0r cos θ =

∞∑
l=0

r(θ)−(l+1)
l∑

m=−l

NlmBlmPlm(cos θ)eimφ, ∀θ ∈ [0, π] (5.1.8)
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Therefore, if we integrate both sides on φ:

−2πE0r cos θ =

∞∑
l=0

r(θ)−(l+1)
l∑

m=−l

NlmBlmPlm(cos θ)

∫ 2π

0

eimφdφ (5.1.9)

Using
∫ 2π

0
eimφdφ = 2πδm0, then:

−E0r cos θ =

∞∑
l=0

r(θ)−(l+1)Nl0Bl0Pl0(cos θ), ∀θ ∈ [0, π] (5.1.10)

Comparing (5.1.8) with (5.1.10), we conclude Nlm = 0 if m 6= 0, because
r(θ) is an arbitrary function. This means, potential (5.1.6) reduces to (2.0.1),
meaning, V (r, θ, φ) = V (r, θ), thus, the entire system is axially symmetric. Such
result also justifies the usage of (2.0.1).

Corollary 5.2.1. Let an emitter shape S under an external electrostatic field
E0. Let S be described in spherical coordinates by r(θ, φ). If a shape S has
axial symmetry, that is r(θ, φ) = r(θ), independent of φ, then the surface charge
density σ(θ, φ) distribution has axial symmetry σ(θ, φ) = σ(θ).

Proof. If V is axially symmetric, E = −∇V also is, and σ = ε0E ·n, where n is
the normal unit vector of S. Therefore, σ must be axially symmetric.

Theorem 5.3. Let an emitter shape S under an external electrostatic field
E0. Let S be described in spherical coordinates by r(θ, φ). If a shape S has
axial symmetry, that is r(θ, φ) = r(θ), independent of φ, and, if S has mirror
symmetry in the xy-plane, that is r(θ) = r(π−θ), then the surface charge density
σ(θ, φ) distribution both has axial symmetry σ(θ, φ) = σ(θ), and, opposite
mirror symmetry: σ(θ) = −σ(π − θ).
Proof. By theorem (5.2.1), because S is axially symmetric, then σ is also axially
symmetric. This means, the multipole moments Ql can be integrated directly
on φ yielding 2π:

Ql =

∫
S

σ(θ)rlPl(cos θ)dS = 2π

∫ 1

−1
σ(x)r(x)l+2Pl(x)JA(x)dx (5.1.11)

In which substitution x = cos θ was done. Notice that, expression above
shows that Ql are proportional to the coefficients of the Legendre expansion of
the function σ(x)r(x)l+2JA(x), that is:

r(x)l+2JA(x)σ(x) =

∞∑
n=0

2Ql
2l + 1

Pl(x) (5.1.12)

By previous theorem, Q2l = 0, it means that only odd Legendre polynomi-
als contribute to the summation, meaning r(x)l+2JA(x)σ(x) must be an odd
function. Because it is already known that r(x) and JA(x) are even (see proof
of previous theorem), then, σ(x) is odd, that is σ(x) = −σ(−x). Because σ(x)
is odd, and −x = − cos θ = cos(π − θ), then, σ(π − θ) = −σ(θ).
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5.2 Two Interacting Shapes

Let two shapes S1 and S2, axially symmetric, mirror symmetric on the xy-plane.
By Theorem (5.1), the monopole charge is zero, because monopole is the zeroth
multipole, and zero is even. Therefore, the next contributing multipole factor,
is the dipole. If these two shapes are in a distance big enough as compared
with their own lengths, then, the leading multipole contribution is the dipole.
By theorem (5.3), it was proven that σ must have xy-symmetry. However, it is
possible to choose σ such that dipole is zero (thus, the next contributing term,
would be the octopole). So far, nothing prevents a special shape from having
zero (or close to zero) dipole moments, and high octopole moments.

Consider S1 and S2 emitter shapes with height h′ and h′′, axial dipole mo-
ments Q′1 and Q′′1 , both nonzero, and FEFs γ′a and γ′′a . Therefore, if both shapes
interact independently of each other, then, they will feel each other’s electric
dipole. It will be assumed shape S1 is centered at position (0, 0, 0) and shape
S2 is at position (c, 0, 0).

E(r) =
3(p · r̂)r̂− p

4πε0r3
, γ(new)

a = γa +
E(d, 0, h) · ẑ

E0
(5.2.1)

Thus:

γ′(new)
a = γ′a +

Q′′1
E0

1

4πε0(c2 + h′2)3/2

[
3h′2

h′2 + c2
− 1

]
γ′′(new)
a = γ′′a +

Q′1
E0

1

4πε0(c2 + h′′2)3/2

[
3h′′2

h′′2 + c2
− 1

] (5.2.2)

In other words:

δ′ =
γ
′(new)
a − γ′a

γ′a
= − 1

γ′a

Ã′′1
(c2 + h′2)3/2

[
1− 3h′2

h′2 + c2

]
δ′′ =

γ
′′(new)
a − γ′′a

γ′′a
= − 1

γ′′a

Ã′1
(c2 + h′′2)3/2

[
1− 3h′′2

h′′2 + c2

] (5.2.3)

Therefore, the fractional change in the apex FEF, δ, falls as −δ ∼ Kc−3 for
the general shapes. More, the pre-factor K depends only on the geometry of
the emitter shape, since γa and A1 depends only on geometry.

It is worth pointing out that, if γa depends only on the aspect ratio term
by term, then A1 (in fact, all Al) will not depend on the aspect ratio, rather,
will depend on h and R in general. This comes from Eq. (2.2.1), in which, by
hypothesis, A1/h

3 depends only on ν.

A1

h3
= f(ν) =⇒ A1 = h3f(ν) (5.2.4)

This can be seen, for instance, in the spheroidal case in Eq. (3.2.25), and
even in the HCP case in Eq. (4.6.5). Also, it can be seen from (3.2.30), where
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a is hypothesized to be much more sensitive on h than the base radius R of a
given shape. This also shows that the multipole moments Ql are not expected
to depend only on the aspect ratio ν.

It was assumed that electrostatic interactions are negligible (independent
shapes), that is, the interaction of both shapes is such, that, the surface charge
distribution of them is not disturbed. A natural question that rises, is if such ap-
proximation is indeed valid, and when the charge distributions begin to change.
That will be done in the next section.

5.3 Potential Theory

The only way to check electrostatic interactions, is by fully solving Laplace
equation. That will be done here. The system to be solved:

∇2V = 0,
V (r′) = 0, ∀r′ ∈ S,

−∇V (r′) = E0, if |r′| → ∞ (5.3.1)

This one is slightly harder to be solved analytically by the methods of po-
tential theorem. However, notice above problem is equivalent to:

∇2Ṽ = 0, Ṽ (r′) = E0r cos θ, ∀r′ ∈ S, (5.3.2)

Where solution is V (r, θ) = −E0r cos θ+ Ṽ (r, θ). This indeed solves bound-
ary conditions because:

V (r, θ)|S = −E0r cos θ + Ṽ (r, θ)
∣∣∣
S

= −E0r(θ) cos θ + E0r(θ) cos θ = 0 (5.3.3)

The problem (5.3.2) can be solved by a Fredholm integral equation of the
second kind [24], written below:

E0r cos θ =
1

2
h(r) +

∫
S

h(r′)
∂Φ

∂ν′
(r− r′) dS(r′) (5.3.4)

Where the solution is given by:

ψ(r) = −
∫
S

h(r′)
∂Φ

∂ν′
(r− r′) dS(r′), Φ(r) =

1

4π

1

|r|
=

1

4πr
(5.3.5)

If one solves (5.3.4) for h, one can plug h in (5.3.5), and the solution ψ is
known. The single and double layer kernels for three dimensional systems are:

Φ(r) =
1

4π

1

|r|
=

1

4πr
, ∇Φ = − 1

4π

r

|r|3
(5.3.6)

Integral Equation (5.3.4) can be solved by means of Liouville–Neumann se-
ries, which basically consists in noticing h appears both outside and both inside
the integral. Thus, isolating h:

h(r) = 2E0r cos θ − 2

∫
S

h(r′)
∂Φ

∂ν′
(r− r′) dS(r′)

= 2E0r cos θ − 2

∫
S

h(r′)
r− r′

|r− r′|3
· n′dS(r′)

(5.3.7)
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We substitute above equation, in the h inside the integral:

h(r) = 2E0r cos θ

− 2

∫
S

[
2E0r

′ cos θ′ − 2

∫
S

h(r′′)
∂Φ

∂ν′′
(r′ − r′′) dS(r′′)

]
∂Φ

∂ν′
(r− r′) dS(r′)

(5.3.8)

Or:

h(r) = 2E0r cos θ − 2

∫
S

2E0r
′ cos θ′

∂Φ

∂ν′
(r− r′) dS(r′)

+ 4

∫
S

∫
S′
h(r′′)

∂Φ

∂ν′′
(r′ − r′′)

∂Φ

∂ν′
(r− r′) dS(r′′)dS(r′)

(5.3.9)

Or:

h(r) = 2E0r cos θ − 4

∫
S

E0r
′ cos θ′

r− r′

|r− r′|3
· n′dS(r′)

+ 4

∫
S

∫
S′
h(r′′)

[
r′ − r′′

|r′ − r′′|3
· n′′

] [
r− r′

|r− r′|3
· n′
]
dS′(r′′)dS(r′)

(5.3.10)

Plugging h again, we get:

h(r) = 2E0r cos θ −
∫
S

4E0r
′ cos θ′

r− r′

|r− r′|3
· n′dS(r′)

+ 4

∫
S

∫
S′
E0r cos θ

[
r′ − r′′

|r′ − r′′|3
· n′′

] [
r− r′

|r− r′|3
· n′
]
dS′(r′′)dS(r′)

− 4

∫
S

∫
S′

∫
S′′
h(r′′)

[
r′′ − r′′′

|r′′ − r′′′|3
· n′′′

] [
r′ − r′′

|r′ − r′′|3
· n′′

] [
r− r′

|r− r′|3
· n′
]
dS′(r′′′)dS(r′′)dS(r′)

(5.3.11)

Plugging h again, and doing so iteratively, one arrives at Liouville–Neumann
series, and a complete solution for h.

h(r) = E0r cos θ +

∞∑
n=1

(−2)n
∫
S(1)

∫
S(2)

· · ·
∫
S(n)

[ · · · ]

n∏
k=1

dS(r(k)) (5.3.12)

It is important to say, no attempt have been made to prove that above series
converges for some shape.

5.3.1 Interacting electrostatic systems

Now, it is easy to find the contribution of interacting systems, by simply con-
sidering S = S1 ∪ S2, where S1 is a shape, and S2 is another shape. Let h1 be
the resolvent kernel of the isolated shape S1, and h2 for the isolated shape S2.
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Their resolvent kernel of S will be, as written by a Liouville-Neumann series:

h(r) = h1(r) + h2(r)

+ 2

∫
S1

∫
S2

E0r
′ cos θ′

[
r′ − r′′

|r′ − r′′|3
· n′′

] [
r− r′

|r− r′|3
· n′
]
dS1(r′′)dS2(r′)

+ 2

∫
S2

∫
S1

E0r
′ cos θ′

[
r′ − r′′

|r′ − r′′|3
· n′′

] [
r− r′

|r− r′|3
· n′
]
dS2(r′′)dS1(r′)

+ · · ·
(5.3.13)

Notice that, if both shapes are separated by a distance c, then, about the
first interacting integral W :

W12 = 2

∫
S1

∫
S2

E0r
′ cos θ′

[
r′ − r′′

|r′ − r′′|3
· n′′

] [
r− r′

|r− r′|3
· n′
]
dS1(r′′)dS2(r′)

≤ 2

∫
S1

∫
S2

E0z
′
∣∣∣∣ r′ − r′′

|r′ − r′′|3
· n′′

∣∣∣∣ ∣∣∣∣ r− r′

|r− r′|3
· n′
∣∣∣∣ dS1(r′′)dS2(r′)

≤ 2

∫
S1

∫
S2

E0z
′
∣∣∣∣ r′ − r′′

|r′ − r′′|3

∣∣∣∣ ∣∣∣∣ r− r′

|r− r′|3

∣∣∣∣ dS1(r′′)dS2(r′)

≤ 2E0z2

∫
S1

∫
S2

1

s2 + (c− t)2
1

s2 + (c− t)2
dS1(r′′)dS2(r′)

= 2E0z2
1

(s2 + (c− t)2)2

∫
S1

∫
S2

dS1(r′′)dS2(r′)

=
2E0z2A1A2

(s2 + (c− t)2)2

(5.3.14)

In this case, A1 and A2 are the surface areas of the shapes S1 and S2 re-
spectively. In addition, z2 is the maximum z distance of shape S2. Also, it was
considered that:

1

s2 + (c− t)2
= sup

{∣∣∣∣ 1

|r′ − r′′|2

∣∣∣∣ ,∀r′ ∈ S1,∀r′′ ∈ S2

}
(5.3.15)

In other words, the inverse maximum square distance between S1 and S2.
Because they are separated at c apart from each other, the minimum distance
is expected to be

√
s2 + (c− t)2, where s and t are fixed parameters involving

both surfaces, and c is the distance separating them. Thus, the interacting
integral W is:

W = W12 +W21 ≤
2E0A1A2

(s2 + (c− t)2)2
(z1 + z2) ∼ 1

c4
(5.3.16)

Because electric dipole approximation is of δ ∼ c−3, and electrostatic in-
teractions become important with c−4, thus, expressions (5.2.3) are expected
to hold. On the other hand, octopole contributions are expected to fall c−5,
therefore, electrostatic interactions become important, thus, there is no point
in doing an independent octopole calculation for δ.
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Chapter 6

Conclusion

The electrostatic potential was assumed to be of the form of Eq. (2.0.1), which
is true for a surface S with axial symmetry (see theorem (5.2)). Then, an error
function Σ was defined in order to minimize the errors from boundary conditions.
A necessary condition was found at Eq. (2.0.6), on which, the parameters Ãl, Gl
and Iij were related, and only depended on the boundary S. Several analytical
conclusions could be drawn from this set up.

The coefficients Al related to the multipole moments Ql of the system by
means of equation (2.3.3), in which, was shown that for a general axially sym-
metric shape, all multipole moments scale linearly with the applied external
electrostatic field E0. That is, if one doubles the field, all multipole moments
will double, as expected.

At the case of a hemisphere on a plate, the system (2.0.6) was solved exactly,
giving the known potential (3.1.9) for a sphere, which a known apex FEF γa = 3
(3.1.10).

Then, it was applied to the hemi-ellipsoid model on a plate. It was shown
by equation (3.2.22) that all even multipole contributions of the system are
zero. It was possible to obtain an expression for the FEF for h� R at equation
(3.2.27). Numerical calculations have been done, by truncating the linear system
and attempting to approximate the values of Ãl. Unfortunately, it was found
that convergence is slow.

The method was then applied to the hemisphere on a post (HCP) model. As
in the case of the prolate spheroid, it was shown by the same way, that all even
multipole contributions (image charge, quadrupole, etc) of a HCP shape over
applied field are zero, thus, only odd multipoles contribute (dipole, octopole,
etc). This had several consequences: it gave information of how the induced
surface charge density must behave, in particular, it was shown in theorem (4.2)
that σ(x)+σ(−x) = 0, that is, the charge density must be an odd function. Both
multipole and σ restrictions was generalized to shapes with axial symmetry, and
mirror symmetry in the xy-plane, as given by theorems (5.1) and (5.3).

Another consequence is that other models attempting to approximate a HCP
shape must comply the conditions over the multipoles, which imposes restric-
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tions. For example, for a line of charge in the interval z ∈ [−a, a] with linear
charge density λ(z), it was shown in theorem (4.3) some encouragement to
choose an odd function λ(z) as well. By means of theorem (5.3), this holds also
when modeling general shapes (as enunciated on the theorem) with a line of
charge, as was done in [23].

In a HCP shape, because image charges are zero, the next non-zero contribu-
tion is of a dipole. It was therefore considered two HCP shapes, interacting via
primitive dipole, and it was shown that the FEF decays by third power law with
respect to the distances of the hemispheres (4.5.8), in agreement of numerical
simulations [20] and analytical models [21]. The same thing happens with one
dimensional arrays as calculated at (4.5.14). Such result was also generalized
for two general axial symmetric and mirror symmetric shapes (not necessarily
identical), where the fractional change in the apex FEF of both shapes was
calculated at equation (5.2.3). Such equation shows that, δ ∼ Kc−3, where c is
the distance between the emitters. It was also shown the pre-factor K does de-
pend on the geometry of the emitter shapes, confirming the tendency in recent
analytical and numerical results [20, 21].

It was shown by means of potential theory that the next contribution in
the double layer resolvent kernel is bounded by equation (5.3.16). This seems
to indicate electrostatic interactions become important in c−4, indicating that
the independence assumption made for the dipole-dipole approximation for two
shapes seems to hold. However, other layers could have been chosen (say, simple
layer, or, some other), and the analysis would be different. Furthermore, no
proof was given that the resolvent converges, thus, such result should be used
with caution.

As for perspectives from future work, the method could be extended for
a general emitter (not necessarily axial symmetric). The potential would be
written as in equation (5.1.6). It is possible that some sort of IG integrals could
be found to minimize the potential on the surface. The entire treatment would
be more complicated, but, it is possible that some interesting theorems can be
proved. This could be investigated further. In addition, investigation about the
role of potential theory in the context of field emission could be more explored.
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Appendix A

Shapes in spherical
coordinates

A.1 Cylinder in spherical coordinates

The equation of a cylinder is x2 + y2 = R2, and we know that, the radial
coordinate is r2 = x2 + y2 + z2 = R2 + z2. However, because z = r cos θ, we
have: r2 = R2 + r2 cos2 θ. We can isolate r, and get: r2(1 − cos2 θ) = R2.
Therefore, for the cylinder:

r =
R

sin θ

That could be done quite obviously from another way: considering a triangle,
where hypothenus is a vector from origin to a point in the cylinder, in such a
way that θ is the azimuthal angle from the spherical coordinate system. From
it, we can extract:

cos θ =
z

r
, sin θ =

R

r
, tan θ =

R

z

We have in spherical coordinates:

x = r cosφ sin θ =
R

sin θ
cosφ sin θ = R cosφ

The same can be done for y and z. And thus, we’ll have a vector:

x = (r cosφ sin θ, r sinφ sin θ, r cos θ) =

(
R cosφ,R sinφ,

R

tan θ

)
.

With it, we can figure out the normal vector of the cylinder:

∂x

∂φ
× ∂x

∂θ
=

∣∣∣∣∣∣
x̂ ŷ ẑ

−R sinφ R cosφ 0
0 0 −R

sin2 θ

∣∣∣∣∣∣ =

−R2 cosφ
sin2 θ

−R2 sinφ
sin2 θ

0

 = − R2

sin2 θ

cosφ
sinφ

0


49



With the normal vector, we can finally figure out the area element: dS =
Jdφdθ. That is:

J =

∥∥∥∥∂x

∂φ
× ∂x

∂θ

∥∥∥∥ =
R2

sin2 θ
= r2

Now we have all data necessary to integrate. We now seek the limits of
integration. At the top of the cylinder, r2 = `2 +R2. Henceforth:

cos θ0 =
`

r
=

`√
`2 +R2

=
1√

1 +
(
R
`

)2 = ac

sin θ0 =
R

r
=

R√
`2 +R2

=
1√

1 +
(
`
R

)2 = as

And, lastly:

tan θ0 =
R

`
,

1

tan θ0
=

`

R

A.2 General symmetrical shape in spherical co-
ordinates

For a general element of area, we need the equation of the shape itself, that is,
r = r(θ, φ). Because the shape is axially-symmetric, r doesn’t depend on φ, and
therefore, r = r(θ).

We’ll now calculate the element of area. For that, we need to calculate
several derivatives. Let us begin:

∂x

∂θ
=
∂r

∂θ
cosφ sin θ + r cosφ cos θ =

x

r

∂r

∂θ
+ z cosφ

∂y

∂θ
=
∂r

∂θ
sinφ sin θ + r sinφ cos θ =

y

r

∂r

∂θ
+ z sinφ

∂z

∂θ
=
∂r

∂θ
cos θ − r sin θ =

z

r

∂r

∂θ
− r sin θ

And now, derivating with respect with φ.

∂x

∂φ
= −r sinφ sin θ = −y

∂y

∂φ
= r cosφ sin θ = +x

∂z

∂φ
= 0 = 0

50



The normal vector:

∂x

∂φ
× ∂x

∂θ
=

∣∣∣∣∣∣
x̂ ŷ ẑ
−y x 0

x
r
∂r
∂θ + z cosφ y

r
∂r
∂θ + z sinφ z

r
∂r
∂θ − r sin θ

∣∣∣∣∣∣
Thus:

∂x

∂φ
× ∂x

∂θ
=

 x
(
z
r
∂r
∂θ − r sin θ

)
y
(
z
r
∂r
∂θ − r sin θ

)
−y
(
y
r
∂r
∂θ + z sinφ

)
− x

(
x
r
∂r
∂θ + z cosφ

)
 (A.2.1)

And, therefore, finally, the element of area is:

J2 =
(
x2 + y2

)(z
r

∂r

∂θ
− r sin θ

)2

+

[
y

(
y

r

∂r

∂θ
+ z sinφ

)
+ x

(
x

r

∂r

∂θ
+ z cosφ

)]2
=
(
x2 + y2

)(z
r

∂r

∂θ
− r sin θ

)2

+ y2
(
y

r

∂r

∂θ
+ z sinφ

)2

+ x2
(
x

r

∂r

∂θ
+ z cosφ

)2

+ 2xy

(
y

r

∂r

∂θ
+ z sinφ

)(
x

r

∂r

∂θ
+ z cosφ

)
(A.2.2)

We can expand the terms even more, and then, group them in powers of z,
and factor out what we can:

J2 = z2

[
(x2 + y2)

(
1

r

∂r

∂θ

)2

+ (x cosφ+ y sinφ)
2

]

+ z

[
−2(x2 + y2) sin θ

∂r

∂θ
+

(
1

r

∂r

∂θ

)(
sinφ

(
2y3 + 2x2y

)
+ cosφ

(
2x3 + 2xy2

))]
+

[
(x2 + y2)r2 sin2 θ +

(
1

r

∂r

∂θ

)2

(x2 + y2)2

]
(A.2.3)

And then we can finally arrive at:

J2 = z2

[
(x2 + y2)

(
1

r

∂r

∂θ

)2

+ (x cosφ+ y sinφ)
2

]

+ 2z(x2 + y2)

[
−
(

sin θ
∂r

∂θ

)
+

(
1

r

∂r

∂θ

)
(x cosφ+ y sinφ)

]
+
(
x2 + y2

)2 [
1 +

(
1

r

∂r

∂θ

)2
] (A.2.4)

Now, we’ll substitute x, y, z by its values: x = r cosφ sin θ, y = r sinφ sin θ, z =
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r cos θ. And for that, some quantities might be useful:

x2 + y2 = r2 sin2 θ
(
cos2 θ + sin2 θ

)
= r2 sin2 θ

x cosφ+ y sinφ = r cos2 φ sin θ + r sin2 φ sin θ = r sin θ

(x cosφ+ y sinφ)2 = (r sin θ)2 = r2 sin2 θ

(A.2.5)

Now, we substitute, and, doing some more calculations, we arrive at this
expression:

J2 = r4 sin2 θ

[
1 +

(
1

r

∂r

∂θ

)2
]

=⇒ J = r2 sin θ

√
1 +

(
1

r

∂r

∂θ

)2

(A.2.6)

Or, because r doesn’t depend on φ, that is, depends exclusively on θ, then:

J = r2 sin θ

√
1 +

(
1

r

dr

dθ

)2

(A.2.7)

A.3 Prolate Spheroid in Spherical Coordinates

For a prolate spheroid (elongated ellipsoid of revolution), with radius R and
height h, obeys the quadric equation:

x2

R2
+
y2

R2
+
z2

h2
= 1 (A.3.1)

Because r2 = x2 + y2 + z2, it becomes:

x2 + y2 +
R2

h2
z2 = R2

x2 + y2 + z2 +

(
R2

h2
− 1

)
z2 = R2

r2 +

(
R2

h2
− 1

)
z2 = R2

r2
[
1 +

(
R2

h2
− 1

)
cos2 θ

]
= R2

(A.3.2)

Where it was used z = r cos θ. The equation of the prolate spheroid becomes:

r =
R√

1− ε2 cos2 θ
, ε2 = 1− R2

h2
(A.3.3)

In here, ε is the eccentricity of the revolution ellipse. Acceptable values of ε
are: 0 ≤ ε < 1, where ε = 0 iff R = h, that is, the problem of the sphere which
was solved. The derivative with respect to theta, becomes:

dr

dθ
= − Rε2 cos θ sin θ

[1− ε2 cos θ]
3/2

(A.3.4)
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Thus:
dr

dθ
= − r

3

R2
ε2 cos θ sin θ (A.3.5)

Using (A.2.7), we find for the spheroid:

J = r2 sin θ

√
1 +

r4

R4
ε4 cos2 θ sin2 θ (A.3.6)

A.4 Suspended hemisphere in spherical coordi-
nates

The suspended hemisphere is much more complicated than the cylinder. The
hemisphere is suspended over the cylinder, thus its center is located at (0, 0,±`).
The equation of both hemispheres are: x2+y2+(z∓`)2 = R2. Again, we recall:
x2 + y2 + z2 = r2, in spherical coordinates. Then:

x2 + y2 + (z ∓ `)2 = R2

x2 + y2 + z2 ∓ 2z`+ `2 = R2

r2 ∓ 2z`+ `2 = R2

Therefore, using z = r cos θ, we get: r2 = R2 − `2 ± 2r` cos θ. The same
result can be reached by a triangle, except this time, unlike the cylinder case,
our triangle is no longer a right triangle. Yet, by cosine law, we can get at the
same result.

Such a triangle becomes a right triangle in the limits of integration: φ ∈
[0, 2π] and θ ∈ [0, θ0]. At θ = 0 we have r = ` + R = h. At θ = θ0, we have
r2 = `2 +R2. And, the θ0 can be calculated using such right triangle:

sin θ0 =
R

r0
, cos θ0 =

`

r0
, tan θ0 =

R

`
(A.4.1)

The equation we got, r2 = R2 − `2 ± 2r` cos θ, is a quadratic equation, and
can be solved analytically:

r = ±` cos θ ±
√
R2 − `2 sin2 θ (A.4.2)

Where, the first ± is due to the location of the sphere (either upwards, or
downwards), while the second ± is due to the ±

√
∆ of the quadratic equation.

Therefore, these are four equations, where only two of them are correct. To find
out, we look at extreme values of θ, namely, 0 and 2π.

θ = 0 =⇒ r = ±`±R
θ = π =⇒ r = ∓`±R

(A.4.3)
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We know that, in both cases, the correct expression should be r = ` + R.
Therefore, we pick ++. That leads us to:

r = ` cos θ +
√
R2 − `2 sin2 θ, θ ≤ π

2
, ` ≥ 0, (Upper Hemisphere)

r = −` cos θ +
√
R2 − `2 sin2 θ, θ ≥ π

2
, ` ≥ 0, (Lower Hemisphere)

(A.4.4)

Another way to interpret such result, is to have one unique formula:

r = ` cos θ +
√
R2 − `2 sin2 θ, θ ∈ [0, π],

` ≥ 0, (Upper Hemisphere)
` ≤ 0, (Lower Hemisphere)

(A.4.5)

A.4.1 Element of Area

We already have equation (A.2.7). Now, all we are lacking to do, is to evaluate
the derivative. We could choose either to deal with unsigned ` as in equation
(A.4.4, or with signed `, as in equation (A.4.5). Notice that, dealing with
unsigned `, two expressions would be required for the derivative, while with
signed ` expression, only one equation would be required. Choosing the signed
expression, and calculating the derivative, one can get:

∂r

∂θ
= −` sin θ

[
1 +

` cos θ√
R2 − `2 sin2 θ

]
(A.4.6)

All we have to do now, is to insert this expression into the J we had, and,
then, finally:

J = r2 sin θ

√√√√1 +
`2

r2
sin2 θ

(
1 +

` cos θ√
R2 − `2 sin2 θ

)2

(A.4.7)

Don’t forget that, r still depends on θ by (A.4.5), so, there is still one
substitution left. But, we’re going to leave it at that.

A.4.2 Approximation: `� R

As we have noticed, the expression for the suspended hemispherical area element
is quite complicated, and we seek to simplify doing approximations of these kind.
For that, we seek in understanding how our variables, `, sin θ, cos θ r behaves.
For that, we seek our attention to (A.4.5). Notice that:

r = ` cos θ︸ ︷︷ ︸
Grows asO(`)

+
√
R2 − `2 sin2 θ︸ ︷︷ ︸
Grows as O(1)

(A.4.8)
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Furthermore, with aid of (A.4.1), we can come up with a more general rela-
tionship, which is valid for all ` (not only `� R), which is:

0 ≤ sin θ ≤ R

r0
,

`

r0
≤ cos θ ≤ 1 (A.4.9)

This helps us identify that, under approximation `� R, sine will keep itself
very close to zero all the time (because r0 ≈ h), and cosine will keep itself very
close to one all the time.

This can be identified geometrically, from the triangle. We can do the same
thing with the square root in expression (A.4.7), in which we can expand, in
order to determine the assymptoptics.

J = r2 sin θ

√√√√√√ 1︸︷︷︸
J∈O(`2)

+
`2

r2
sin2 θ︸ ︷︷ ︸

J∈O(1)

+
`2

r2
`2 cos2 θ sin2 θ

R2 − `2 sin2 θ︸ ︷︷ ︸
J∈O(`2)

+
`2

r2
2` cos θ sin2 θ√
R2 − `2 sin2 θ︸ ︷︷ ︸
J∈O(`)

(A.4.10)
Now, we pick the highest asymptoptics, that is, O(`2), and neglect all others.

We, thus, have:

J = r2 sin θ

√
1 +

`2

r2
`2 cos2 θ sin2 θ

R2 − h2 sin2 θ
, `� R (A.4.11)

Now we have a much simpler area element J : There’s no longer a square
root inside a square root, and a few other benefits.

A.4.3 Approximation: `� R

We can’t use the same asymptoptics as equation (A.4.10), because it was as-
sumed ` ≈ r, which is clearly not true anymore under this approximation regime.
Now, we have r ≈ R. In addition, from (A.4.9), we conclude that cosine and
sine will vary freely as θ changes from 0 to θ0, precisely because θ0 is an angle
close to π/2.

We that in mind, we can re-write equation (A.4.10) for our approximation
case:

J = r2 sin θ

√√√√√√ 1︸︷︷︸
J∈O(1)

+
`2

r2
sin2 θ︸ ︷︷ ︸

J∈O(`)

+
`2

r2
`2 cos2 θ sin2 θ

R2 − `2 sin2 θ︸ ︷︷ ︸
J∈O(`2)

+
`2

r2
2` cos θ sin2 θ√
R2 − `2 sin2 θ︸ ︷︷ ︸
J∈O(`3/2)

(A.4.12)
Considering only the O(1) term, we recover J = r2 sin θ, the same for an

sphere, especially if one considers r ≈ R. Henceforth, we’ll also pick the term
O(`). Therefore:

J = r2 sin θ

√
1 +

`2

r2
sin θ, `� R (A.4.13)
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Appendix B

Spheroidal Integrals

B.1 G-Integrals

Recalling (2.0.4):

Gl =

∫
S

r−lPl(cos θ) cos θdS

Having the area element in (A.3.6), together with (A.3.3), the G-integral
can be written as

Ġl =

∫ 2π

0

∫ π

0

r−lPl(cos θ) cos θ · r2 sin θ ·
√

1 +
r4

R4
ε4 cos2 θ sin2 θdθdφ (B.1.1)

Therefore, integrating at φ:

Ġl = 2π

∫ π

0

r−l+2Pl(cos θ) cos θ sin θ

√
1 +

r4

R4
ε4 cos2 θ sin2 θdθ (B.1.2)

The substitution x = cos θ yields: dx = − sin θ, where θ ∈ [0, π] =⇒ x ∈
[−1, 1]. Therefore:

Ġl = 2π

∫ 1

−1
r−l+2Pl(x)x

√
1 +

r4

R4
ε4x2(1− x2)dx (B.1.3)

It is important to notice something:

Ġl = 2π

∫ 1

−1
r−l+2︸ ︷︷ ︸
Even

Pl(x)x︸ ︷︷ ︸
Even ifl∈{1,3,5}

√
1 +

r4

R4
ε4x2(1− x2)︸ ︷︷ ︸
Even

dx (B.1.4)

Here we used the fact, that, r(x) and its derivative are even:

r(x) = r(−x),

(
1

r

dr

dθ

)2

(x) =

(
1

r

dr

dθ

)2

(−x) (B.1.5)
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as can be computed directly from (A.3.3) and (A.3.5). Because the integral
domain is symmetric (from -1 to 1), an odd integrand will yield zero, which will
happen with l ∈ {0, 2, 4, 6, ...}. When integrand is odd, we guarantee nonzero
result, due to symmetric domain (unless the entire integrand is identically zero,
which is not the case).

Ġl = 0, if l ∈ {0, 2, 4, 6, 8, . . . }
Ġl 6= 0, if l ∈ {1, 3, 5, 7, 9, . . . }

(B.1.6)

Using (A.3.3), we get:

Ġl =
2π

R−l+2

∫ 1

−1

xPl(x)

[1− ε2x2]
−l+2

2

√
1 +

ε4x2(1− x2)

1− ε2x2
dx (B.1.7)

It only makes sense to calculate G2l+1, for l ∈ {0, 1, 2, . . . }. With that in
mind, consider:

Ġ2l+1 = 2π

∫ 1

−1
r−(2l+1)+2 · xP2l+1(x) ·

√
1 +

r4

R4
ε4x2(1− x2)dx

Ġ2l+1 = 2π

∫ 1

−1
r−2l+1 · xP2l+1(x) ·

√
1 +

r4

R4
ε4x2(1− x2)dx

(B.1.8)

Again using (A.3.3), we get:

Ġ2l+1 = 2πR−2l+1

∫ 1

−1

xP2l+1(x)

[1− ε2x2]
−l+1/2

·

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx (B.1.9)

Which can also be written as:

Ġ2l+1 =
2π

R2l−1

∫ 1

−1
xP2l+1(x)

[
1− ε2x2

]l−1/2 ·√1 +
ε4x2(1− x2)

(1− ε2x2)2
dx (B.1.10)

As the case with the Legendre polynomials, we can write the power in terms
of a binomial expansion, except this one will have infinite terms. The more ε
approaches one, the more terms will be needed to approximate it.[

1− ε2x2
]l−1/2

=

∞∑
n=0

(
l − 1

2

n

)(
−ε2x2

)n
(B.1.11)

Where we define the generalized binomial coefficients as:(
α

k

)
:=

α(α− 1)(α− 2) · · · (α− k + 1)

k!
. (B.1.12)

Rewriting (B.1.10), we get:

Ġ2l+1 =
2π

R2l−1

∫ 1

−1
xP2l+1(x) ·

∞∑
k=0

(
l − 1

2

n

)
(−1)nε2nx2n ·

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx

(B.1.13)
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Making the proper substitutions, and writing the Legendre polynomials as:

Pl(x) =

l∑
k=0

alkx
k (B.1.14)

Then:

P2l+1(x) =

2l+1∑
k=0

a2l+1,kx
k =

l∑
k=0

a2l+1,2k+1x
2k+1

Therefore:

Ġ2l+1 =
2π

R2l−1

∫ 1

−1
x

l∑
k=0

a2l+1,2k+1x
2k+1 ·

∞∑
n=0

(
l − 1

2

n

)
(−1)nε2nx2n ·

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx

Ġ2l+1 =
2π

R2l−1

l∑
k=0

a2l+1,2k+1

∞∑
n=0

(−1)n
(
l − 1

2

n

)
ε2n
∫ 1

−1
x2k+2x2n ·

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx

Ġ2l+1 =
2π

R2l−1

∞∑
n=0

l∑
k=0

(−1)na2l+1,2k+1

(
l − 1

2

n

)
ε2n
∫ 1

−1
x2(k+n+1) ·

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx

(B.1.15)

Finally:

Ġ2l+1 =
2π

R2l−1

∞∑
n=0

l∑
k=0

(−1)na2l+1,2k+1

(
l − 1

2

n

)
ε2nA2(k+n+1) (B.1.16)

Where An is the nth moment of f in the [−1, 1], that is:

An =

∫ 1

−1
xnf(x)dx =

∫ 1

−1
xn

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx (B.1.17)

It is possible to write An exactly in terms of hypergeometric functions,
but, seeking simplicity, we’ll content ourselves with the second order Taylor
expansion, which we already computed. There are a few important properties:
A2n+1 = 0 by parity. Furthermore, because f(x) > 0,∀x ∈ [−1, 1], one gets:

x2 < 1, ∀x ∈ [−1, 1]

x2n+2 < x2n, ∀x ∈ [−1, 1]

x2n+2f(x) < x2nf(x), ∀x ∈ [−1, 1]

A2n+2 < A2n, ∀x ∈ [−1, 1]

(B.1.18)
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Rewriting (B.1.16) as Ġ2l+2 = 2π
R2l−1

∑∞
n=0 an, one gets:

an =

l∑
k=0

(−1)na2l+1,2k+1

(
l − 1

2

n

)
ε2nA2(k+n+1)

an = (−1)n
(
l − 1

2

n

)
ε2n

l∑
k=0

a2l+1,2k+1A2(k+n+1)

an+1 = (−1)n+1

(
l − 1

2

n

)
ε2n

l∑
k=0

a2l+1,2k+1A2(k+n+1)

(B.1.19)

Therefore:

an+1

an
=

(−1)n+1
(
l− 1

2
n

)
ε2n+2

∑l
k=0 a2l+1,2k+1A2(k+n+2)

(−1)n
(
l− 1

2
n

)
ε2n
∑l
k=0 a2l+1,2k+1A2(k+n+1)

(B.1.20)

Thus:

an+1

an
=

[ 1
2 − l
n+ 1

+
n

n+ 1

]
ε2
∑l
k=0 a2l+1,2k+1A2(k+n+2)∑l
k=0 a2l+1,2k+1A2(k+n+1)

(B.1.21)

Thus, if n + 1/2 > l, then an+1 < an. More, if both factors are close to
one, then, we get an+1 ≈ ε2an. This is particularly relevant, if one is interested
using the summation for numerical computation.

What is left, is to Taylor expand f(x).

f(x) =
√

1 + g(x), g(x) =
h(x)

q(x)
,

h(x) = ε4x2(1− x2)
q(x) = (1− ε2x2)2

(B.1.22)

Then:

f ′(x) =
g′(x)

2f(x)
,

h′(x) = 2ε4x(1− 2x2)
q′(x) = −2ε2x(1− ε2x2)

f ′′(x) =
g′′(x)

2f(x)
− g′(x)f ′(x)

2f(x)2
,

h′′(x) = 2ε4(1− 6x2)
q′′(x) = −2ε2(1− 2ε2x)

g′(x) =
h′(x)q(x)− h(x)q′(x)

q(x)2

q(x)2g′′(x) = h′′(x)q(x)− h(x)q′′(x)− 2h′(x)q′(x) + 2h(x)
q′(x)2

q(x)

(B.1.23)

With that, we find:

f(0) = 1, f(±1) = 1, f ′(0) = 0, f ′′(0) = ε4

Because we have f(0) = f(±1) = 1 and f ′(0) = 0 and f ′′(0) > 0, there must
necessarily exist at least two points of maximum inside [−1, 1], that is, there
exists xm and −xm, where −1 < xm < 1, such that f ′(xm) = 0 and f ′′(xm) < 0.
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Enforcing f ′(x) = 0 yields a polynomial equation of 7th degree, in which all the
roots can be found analytically. The value ±xm is important, because, if we
have f(xm), we’d have an upper bound for f in the [−1, 1] domain, enabling us
to estimate the error we’re committing by integrating a Taylor expansion, and,
by allowing us to come up with better trying functions. It turns out, not much
error is done by Taylor expanding, and, in general, the greater ε, the greater
the error. Therefore, we’ll consider:

f(x) ≈ 1 +
ε4

2
x2 (B.1.24)

Therefore, integrating, An is found:

A2n ≈
∫ 1

−1
x2n

[
1 +

ε4

2
x2
]
dx =

1

n+ 1
2

+
ε4

2

1

n+ 3
2

(B.1.25)

Therefore, while (B.1.16) is the exact expression, a reasonable approximation
on top of it can be:

Ġ2l+1 ≈
2π

R2l−1

∞∑
n=0

l∑
k=0

(−1)na2l+1,2k+1

(
l − 1

2

n

)
ε2n
[

1

n+ k + 1 + 1
2

+
ε4

2

1

n+ k + 1 + 3
2

]
(B.1.26)

B.2 I-Integrals

Recalling (2.0.4):

Iij =

∫
S

r−(i+j+2)Pi(cos θ)Pj(cos θ)dS

Inserting (A.3.6) at equation above:

İij =

∫ π

0

∫ 2π

0

r−(i+j+2)Pi(cos θ)Pj(cos θ) · r2 sin θ

√
1 +

r4

R4
ε4 cos2 θ sin2 θ · dφdθ

Integrating in φ:

İij = 2π

∫ π

0

r−i−jPi(cos θ)Pj(cos θ) sin θ

√
1 +

r4

R4
ε4 cos2 θ sin2 θ · dθ (B.2.1)

Making the substitution x = cos θ:

İij = 2π

∫ 1

−1
r−i−jPi(x)Pj(x)

√
1 +

r4

R4
ε4x2(1− x2) · dx

By the same parity arguments as shown in equation (B.1.4) and (B.1.5), we
conclude: İij = 0 iff PiPj is odd iff i + j is odd. And, thus, İij 6= 0 iff i + j
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is even. Therefore, one only needs İij iff i + j = 2n for some integer n. Let
j = 2n− i, and thus, Ii,2n−i 6= 0.

Substituing x = cos θ into the radial equation (A.3.3), one gets r(x), and
inserting at equation above, one gets:

Iij = 2π

∫ 1

−1

[
R√

1− ε2x2

]−i−j
Pi(x)Pj(x)

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx

Thus:

Iij =
2π

Ri+j

∫ 1

−1
Pi(x)Pj(x)

[√
1− ε2x2

]i+j√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx (B.2.2)

Because i + j must be even for Iij 6= 0, then, i+j
2 is an integer. Meaning,

the square root in the middle of above expression vanishes, as indicated by
expression below:

Iij =
2π

Ri+j

∫ 1

−1
Pi(x)Pj(x)

[
1− ε2x2

] i+j
2

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx (B.2.3)

As it was done in the case of G-integrals, using (B.1.11) and (B.1.14), to
find:

Iij =
2π

Ri+j

∫ 1

−1

i∑
u=0

au,ix
u

j∑
v=0

av,jx
v

i+j
2∑

n=0

( i+j
2

n

)
(−ε2x2)n

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx,

(B.2.4)
Unlike G-integrals, the expansion by the binomial theorem doesn’t yield an

infinite series, precisely because the exponent is an integer.

Iij =
2π

Ri+j

i∑
u=0

j∑
v=0

au,iav,j

i+j
2∑

n=0

( i+j
2

n

)
(−ε2)n

∫ 1

−1
xu+v+2n

√
1 +

ε4x2(1− x2)

(1− ε2x2)2
dx

(B.2.5)
Therefore, for i+ j even, the exact expression is:

Iij =
2π

Ri+j

i∑
u=0

j∑
v=0

i+j
2∑

n=0

(−1)nau,iav,j

( i+j
2

n

)
ε2nAu+v+2n (B.2.6)

We can approximate, using (B.1.25), for i+ j even, and get:

Iij =
2π

Ri+j

i∑
u=0

j∑
v=0

i+j
2∑

n=0

(−1)nau,iav,j

( i+j
2

n

)
ε2n
[

1

n+ u+v
2 + 1

2

+
ε4

2

1

n+ u+v
2 + 3

2

]
(B.2.7)

For i+ j odd, we know Iij = 0.
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Appendix C

Suspended Hemispherical
Integrals

C.1 Exact case

From (A.4.5), recall:

r = ` cos θ +
√
R2 − `2 sin2 θ

From (A.4.7), recall the element of area:

J = r2 sin θ

√√√√1 +
`2

r2
sin2 θ

(
1 +

` cos θ√
R2 − `2 sin2 θ

)2

Both equations are valid for signed `, depending if one is referring to the
upper hemisphere or lower hemisphere. With substitution x = cos θ, just like it
was done with the prolate spheroid, we’ll get:

r = `x+
√
R2 − `2(1− x2)

r2 = `2x2 +R2 − `2(1− x2) + 2`x
√
R2 − `2(1− x2)

r2 = (R2 − `2) + 2`2x2 + 2`x
√
R2 − `2(1− x2)

(C.1.1)

Like the prolate spheroid, r(x) is an even function, because, if x > 0, then
cos θ > 0, then we are dealing with the upper hemisphere, then ` > 0. For x < 0
we get ` < 0. Therefore, r(x) = r(−x).

The same substitution can be done with J .

J = r2 sin θ

√√√√1 +
`2

r2
(1− x2)

(
1 +

`x√
R2 − `2(1− x2)

)2
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The sin θ was left on purpose precisely because dx = − sin θdθ, thus, it will
vanish when a change of variables is done in the integral. Thus, making the
substitution into the r2 inside the square root, we get:

J = r2 sin θ

√√√√√1 +
`2(1− x2)[

`x+
√
R2 − `2(1− x2)

]2
(

1 +
`x√

R2 − `2(1− x2)

)2

(C.1.2)
For the substitution of r2, we motivate the following definition:

JA =

√√√√√1 +
`2(1− x2)[

`x+
√
R2 − `2(1− x2)

]2
(

1 +
`x√

R2 − `2(1− x2)

)2

(C.1.3)

Notice JA is also an even function, as JA(x) = JA(−x), recalling that, if
x > 0 then ` > 0, and, if x < 0 then ` < 0.

Then, one can write the element of area in the following way:

J = r2JA sin θ = JA sin θ
[
`x+

√
R2 − `2(1− x2)

]2
(C.1.4)

Notice that, as `→ 0 then JA → 1, meaning, J → r2 sin θ, the sphere case.

C.1.1 G-Integrals

Recalling (2.0.4):

Gl =

∫
S

r−lPl(cos θ) cos θdS

Just like it was done previously with other shapes, it is done here. Unlike the
spherical or spheroidal case, integration limits happens at the upper hemisphere
is θ ∈ [0, θ0]. For the upper hemisphere, we have:

Gl =

∫ θ0

0

∫ 2π

0

r−lPl(cos θ) cos θr2 sin θJAdθdφ (C.1.5)

Therefore, integrating in φ, we get:

Gl = 2π

∫ θ0

0

r−l+2Pl(cos θ) cos θ sin θJAdθ (C.1.6)

One shouldn’t forget there also exists the bottom hemisphere. The total
integration limits are θ ∈ [0, θ0] ∪ [π, π − θ0].

Gl = 2π

(∫ θ0

0

+

∫ π

π−θ0

)
r−l+2Pl(cos θ) cos θ sin θJAdθ (C.1.7)
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Now, substitution x = cos θ can be done. Then, dx = − sin θdθ. Also, recall
integration limits from (A.4.1), thus we get:

Gl = 2π

∫ 1

`/r0

r−l+2Pl(x)xJAdx+ 2π

∫ −`/r0
−1

r−l+2Pl(x)xJAdx (C.1.8)

Recalling Pn(−x) = (−1)nPn(x), we can do a substitution x = −y in the
second integral of expression (C.1.8). Thus:

Gl = 2π

∫ 1

`/r0

r−l+2Pl(x)xJA(x)dx+ 2π

∫ 1

`/r0

(−1)lr−l+2Pl(y)(−y)JA(−y)dy

(C.1.9)
Therefore, using JA(x) = JA(−x):

Gl = 2π

∫ 1

`/r0

r−l+2Pl(x)xJA(x)dx+ 2π(−1)l+1

∫ 1

`/r0

r−l+2Pl(x)xJA(x)dx

(C.1.10)
Thus:

G2l = 0

G2l+1 = 4π

∫ 1

`/r0

r−2l+1P2l+1(x)xJAdx
(C.1.11)

C.1.2 I-Integrals

Having found an integral expression for Gl, we seek attention to Iij . Again,
looking at (2.0.4):

Iij =

∫
S

r−i−j−2Pi(cos θ)Pj(cos θ)dS

Which becomes:

Iij = 2π

(∫ θ0

0

+

∫ π

π−θ

)
r−i−jPi(cos θ)Pj(cos θ) sin θJAdθ (C.1.12)

Substitution x = cos θ yields:

Iij = 2π

∫ 1

`/r0

r−i−jPi(x)Pj(x)JAdx+ 2π

∫ −`/r0
−1

r−i−jPi(x)Pj(x)JAdx

(C.1.13)
Making transformation x← −x in the second integral:

Iij = 2π

∫ 1

`/r0

r−i−jPi(x)Pj(x)JAdx+ 2π

∫ 1

`/r0

r−i−j(−1)iPi(x)(−1)jPj(x)JAdx

(C.1.14)
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Or:

Iij = 2π

∫ 1

`/r0

r−i−jPi(x)Pj(x)JAdx+ 2π(−1)i+j
∫ 1

`/r0

r−i−jPi(x)Pj(x)JAdx

(C.1.15)
Which simplifies to:

Iij = 4π

∫ 1

`/r0

r−i−jPi(x)Pj(x)JAdx, i+ j ∈ {0, 2, 4, 6, 8, . . . } (C.1.16)

And Iij = 0 otherwise.

C.2 Approximation `� R

It would only be a matter of substituting JA from equation (C.1.3) into (C.1.11)
or (C.1.16) However, JA form is too complicated to yield a direct integration,
thus, we seek to approximate it.

C.2.1 Approximating r2

We need to find an approximation for r2 and for J . One possibility, is to Taylor
expand with respect to `, centered at ` = 0. Doing that for r2, one can get:

r2 = (R2 − `2) + 2`2x2 + 2`x
√
R2 − `2(1− x2)

dr2

d`
= −2`+ 4`x2 + 2x

√
R2 − `2(1− x2) +

1

2

2x` · (−2)`(1− x2)√
R2 − `2(1− x2)

dr2

d`
= −2`+ 4`x2 + 2x

√
R2 − `2(1− x2)− 2x`2(1− x2)√

R2 − `2(1− x2)

dr2

d`

∣∣∣∣
`=0

= 2x
√
R2 = 2xR

(C.2.1)

Now we find the second derivative:

d2r2

d`2
=

d

d`

[
2`+ 4`x2 + 2x

√
R2 − `2(1− x2)− 2x`2(1− x2)√

R2 − `2(1− x2)

]
d2r2

d`2
= −2 + 4x2 +

1

2

2x · (−2)`(1− x2)√
R2 − `2(1− x2)

− 4x`(1− x2)√
R2 − `2(1− x2)

−
2x`2(1− x2) · −12 (−2)`(1− x2)√

R2 − `2(1− x2)
3

d2r2

d`2
= −2 + 4x2 − 2x`(1− x2)√

R2 − `2(1− x2)
− 4x`(1− x2)√

R2 − `2(1− x2)
− 2x`3(1− x2)2√

R2 − `2(1− x2)
3

d2r2

d`2
= −2 + 4x2 − 6x`(1− x2)√

R2 − `2(1− x2)
− 2x`3(1− x2)2√

R2 − `2(1− x2)
3

(C.2.2)
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Therefore, we conclude:

r2(x)
∣∣
`=0

= R2,
dr2

d`

∣∣∣∣
`=0

= 2xR,
d2r2

d`2

∣∣∣∣
`=0

= −2 + 4x2 (C.2.3)

And thus, the Taylor approximation for r(x) is:

r2(x) = R2 + 2xR`+
(
4x2 − 2

)
`2 +O(`3) (C.2.4)

C.2.2 Approximating rn

Recall:
r = `x+

√
R2 − `2(1− x2) (C.2.5)

The first derivative and second derivative:

drn

d`
= nrn−1

dr

d`

d2rn

d`2
= n(n− 1)rn−2

(
dr

d`

)2

+ nrn−1
d2r

d`2

(C.2.6)

Thus, the following derivatives are required:

dr

d`
= x− `(1− x2)√

R2 − `2(1− x2)

d2r

d`2
= − 1− x2√

R2 − `2(1− x2)
− `2(1− x2)2

[R2 − `2(1− x2)]
3/2

(C.2.7)

Therefore, evaluating them at ` = 0, yields:

dr

d`

∣∣∣∣
`=0

= x,
d2r

d`2

∣∣∣∣
`=0

= −1− x2

R
(C.2.8)

Thus:

drn

d`

∣∣∣∣
`=0

= nxRn−1,
d2rn

d`2

∣∣∣∣
`=0

= n(n− 1)Rn−2x2 − nRn−1 1− x2

R
(C.2.9)

Re-writing:

drn

d`

∣∣∣∣
`=0

= nxRn−1

d2rn

d`2

∣∣∣∣
`=0

= nRn−2
(
nx2 − 1

) (C.2.10)
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C.2.3 Approximating JA

If a generic function f : R→ R is written as: f(x) =
√

1 + g(x), then:

f ′(x) =
1

2

g′(x)√
1 + g(x)

=
1

2

g′(x)

f(x)

Looking at JA from (C.1.3), we notice JA as a function of ` has similar
behavior as the above function. We define:

c(`) =
√
R2 − `2(1− x2)

a(`) =
`2(1− x2)[

`x+
√
R2 − `2(1− x2)

]2 =
`2(1− x2)

[`x+ c(`)]
2

b(`) =
`x√

R2 − `2(1− x2)
=

`x

c(`)

JA =

√
1 + a(`) (1 + b(`))

2

(C.2.11)

Therefore, the first derivative:

dJA
d`

=
1

2JA

[
da

d`
(1 + b(`))

2
+ 2a(`)

db

d`
(1 + b(`))

]
dJA
d`

=
1

2JA
(1 + b(`))

[
da

d`
(1 + b(`)) + 2a(`)

db

d`

] (C.2.12)

The second derivative:

d2JA
d`2

= − 1

2J2
A

dJA
d`

(1 + b(`))

[
da

d`
(1 + b(`)) + 2a(`)

db

d`

]
+

1

2JA

db

d`

[
da

d`
(1 + b(`)) + 2a(`)

db

d`

]
+

1

2JA
(1 + b(`))

[
d2a

d`2
(1 + b(`)) +

da

d`

db

d`
+ 2

da

d`

db

d`
+ 2a(`)

d2b

d`2

]
(C.2.13)

Now, we find the derivatives of a, b, and c, starting with c:

dc

d`
=

1

2

(−2)`(1− x2)√
R2 − `2(1− x2)

= −`(1− x
2)

c(`)

d2c

d`2
=

d

d`

[
−`(1− x

2)

c(`)

]
= −1− x2

c
+
`(1− x2)

c2
dc

d`

d2c

d`2
= −1− x2

c
+
`(1− x2)

c2
`(1− x2)

c
= −1− x2

c
+
`2(1− x2)2

c3

(C.2.14)
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Then, derivative of a:

da

d`
=

2`(1− x2)

[`x+ c(`)]
2 −

2`2(1− x2)

[`x+ c(`)]
3

(
x− `(1− x2)

c(`)

)
da

d`
=

2`(1− x2)

[`x+ c(`)]
2 −

2`2(1− x2)

[`x+ c(`)]
3

(
x− `(1− x2)

c(`)

) (C.2.15)

Then, derivative of b:

db

d`
=

d

d`

[
`x

c

]
=
x

c
− `x

c2
· `(1− x

2)

c

db

d`
=
x

c
− `2x(1− x2)

c3
,

d2b

d`2
= − x

c2
dc

d`
+

2`x(1− x2)

c3
+

4`2x(1− x2)

c4
dc

d`

(C.2.16)

Considering that c(0) = R, then:

dc

d`

∣∣∣∣
`=0

= 0,
d2c

d`2

∣∣∣∣
`=0

= −1− x2

c
= −1− x2

R
,

da

d`

∣∣∣∣
`=0

= 0,
d2a

d`2

∣∣∣∣
`=0

=
2(1− x2)

c2
=

2(1− x2)

R2
,

db

d`

∣∣∣∣
`=0

=
x

c
=
x

R
,

d2b

d`2

∣∣∣∣
`=0

= 0

(C.2.17)

Therefore, evaluating a(0) = b(0) = 0, one can get:

dJA
d`

∣∣∣∣
`=0

= 0,
d2JA
d`2

∣∣∣∣
`=0

=
d2a

d`2

∣∣∣∣
`=0

=
2(1− x2)

R2
(C.2.18)

Thus, the Taylor expansion for JA is:

JA = 1 +
2(1− x2)

R2
`2 +O(`3) (C.2.19)

C.2.4 Approximating J

Recall we have defined: J = r2 sin θJA. Therefore:

dJ

d`
=
dr2

d`
sin θJA + r2 sin θ

dJA
d`

(C.2.20)

Therefore:

dJ

d`

∣∣∣∣
`=0

= 2xR sin θJA +R2 sin θ · 0

dJ

d`

∣∣∣∣
`=0

= 2xR sin θJA

(C.2.21)
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Doing the same for second derivative:

dJ

d`
=
d2r2

d`2
sin θJA +

dr2

d`

dJA
d`

sin θ +
dr2

d`

dJA
d`

sin θ + r2 sin θ
d2JA
d`2

(C.2.22)

Therefore:

d2J

d`2

∣∣∣∣
`=0

= 2JA sin θ + 2xR · 0 · sin θ + 2xR · 0 · sin θ +R2 sin θ · 2(1− x2)

R2

d2J

d`2

∣∣∣∣
`=0

= 2JA sin θ +R2 sin θ · 2(1− x2)

R2

(C.2.23)

We now write J up to second order:

J =
[
R2 + 2xR`+ 2(1− x2)`2 +O(`3)

]
sin θ (C.2.24)

C.2.5 Approximating rnJA

This approximation is fairly important, because it is precisely the integrand of
the Gl and Iij integrals. We proceed by the same way:

d

d`
[rnJA]`=0 =

[
drn

d`
JA + rn

dJA
d`

]
`=0

(C.2.25)

First, notice rn|`=0 = Rn, precisely because r|`=0 = R. That can also be
seen by direct substitution of ` = 0 in the expression for rn. Now, we seek to
calculate the first derivative. We’ve already calculated the derivatives, which
can be seen from equations (C.2.18) and (C.2.10).

d

d`
[rnJA]`=0 = nxRn−1 (C.2.26)

Now, to second order:

d

d`
[rnJA]`=0 =

[
d2rn

d`2
JA + 2

drn

d`

JA
d`

+ rn
d2JA
d`2

]
`=0

(C.2.27)

Again, using equations (C.2.18) and (C.2.10), we arrive at:

d2

d`2
[rnJA]`=0 = nRn−2

(
nx2 − 1

)
+Rn

2(1− x2)

R2

d2

d`2
[rnJA]`=0 = Rn−2

[
n
(
nx2 − 1

)
+ 2(1− x2)

]
d2

d`2
[rnJA]`=0 = Rn−2

[
n2x2 − n+ 2− 2x2

]
d2

d`2
[rnJA]`=0 = Rn−2

[(
n2 − 2

)
x2 − (n− 2)

]
(C.2.28)

Therefore, the final answer:

rnJA = Rn + nxRn−1`+
[(
n2 − 2

)
x2 − (n− 2)

]
Rn−2`2 +O(`3) (C.2.29)
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C.2.6 G-Integrals

To solve the integrals, recall equation (C.1.11), written below:

G2l+1 = 4π

∫ 1

`/r0

r−2l+1P2l+1(x)xJAdx (C.2.30)

Our goal would be to Taylor expand the integrand r−2l+1P2l+1(x)xJA(x).
Because the expansion is around ` = 0, the terms xPl(x) won’t contribute,
because they do not depend explicitly on `. The remaining terms r−l+2JA is a
case of (C.2.29), for n = −l + 2. Therefore, making the substitutions, one can
get:

Gl = 4π

∫ 1

`/r0

Pl(x)x
{
Rn + nxRn−1`+

[(
n2 − 2

)
x2 − (n− 2)

]
Rn−2`2

}
dx

(C.2.31)
Therefore, one is left with the following integrals to compute:

Gl = 4πR−l+2

∫ 1

`/r0

Pl(x)xdx

+ 4π(−l + 2)R−l+1`

∫ 1

`/r0

Pl(x)x2dx

+ (l2 − 4l + 2)
4π

Rl
`2
∫ 1

`/r0

x3Pl(x)dx

+
4lπ

Rl
`2
∫ 1

`/r0

xPl(x)dx

(C.2.32)

Moments of Legendre Polynomials

Making reference of (C.2.32), one requires to calculate first, second and third
moments of the legencre polynomials, that is:∫

xmPn(x)dx, m ∈ {1, 2, 3} (C.2.33)

A recurrency relation can be useful in computing integrals:

(2n+1)Pn(x) =
d

dx
[Pn+1(x)− Pn−1(x)] =⇒

∫
Pn(x)dx =

Pn+1(x)− Pn−1(x)

2n+ 1
+C

(C.2.34)
To calculate first moments of the Legendre polynomials, all one has to do,
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is to integrate by parts:∫
xPn(x)dx = x

∫
Pn(x)dx−

∫
Pn+1(x)− Pn−1(x)

2n+ 1
dx∫

xPn(x)dx = x
Pn+1(x)− Pn−1(x)

2n+ 1
− 1

2n+ 1

[
Pn+2(x)− Pn(x)

2(n+ 1) + 1
− Pn(x)− Pn−2(x)

2(n− 1) + 1

]
+ C∫

xPn(x)dx = x
Pn+1(x)− Pn−1(x)

2n+ 1
− 1

2n+ 1

[
Pn+2(x)− Pn(x)

2n+ 3
− Pn(x)− Pn−2(x)

2n− 1

]
+ C

(C.2.35)

Once the first moment is calculated, it can be used to calculate the second
moment, again using integration by parts:∫

x2Pn(x)dx = x2
∫
Pn(x)dx−

∫
2x
Pn+1(x)− Pn−1(x)

2n+ 1
dx∫

x2Pn(x)dx = x2
∫
Pn(x)dx− 2

2n+ 1

[∫
xPn+1(x)dx−

∫
xPn−1(x)dx

]
(C.2.36)

The third moment can be found by the same procedure. An analytical exact
solution for any moment can be found, though, the expressions start to grow in
size pretty quickly.

Value of G1

Given a general expression will be needlessly complicated, we’ll focus on l = 1,
that is, G1. The Legendre polynomials for these orders are P1(x) = x. We’ll
proceed by calculating moments of P1.∫

xP1(x)dx =

∫
x · xdx =

x3

3
+ C∫

x2P1(x)dx =

∫
x2 · xdx =

x4

4
+ C∫

x3P1(x)dx =

∫
x3 · xdx =

x5

5
+ C

(C.2.37)

Using expression (C.2.32), we find for G1:

G1 = 4πR1 x
3

3

∣∣∣∣1
`/r0

+ 4π`
x4

4

∣∣∣∣1
`/r0

− 4π

R
`2
x5

5

∣∣∣∣1
`/r0

− 3
4π

R
`2
x4

4

∣∣∣∣1
`/r0

G1 = 4πR
1

3

[
1−

(
`

r0

)3
]

+ 4π`
1

4

[
1−

(
`

r0

)4
]

− 4π

R
`2

1

5

[
1−

(
`

r0

)5
]

+
4π

R
`2

1

3

[
1−

(
`

r0

)3
] (C.2.38)
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Or, rewriting:

G1 =
4

3
πR

[
1−

(
`

r0

)3
]

+ π`

[
1−

(
`

r0

)4
]

− 4π

5R
`2

[
1−

(
`

r0

)5
]

+
4π

3R
`2

[
1−

(
`

r0

)3
] (C.2.39)

C.2.7 I-Integrals

Substituting r−i−jJA as in equation (C.2.29) into (C.1.16) for n = −i− j, one
finds the expression for Iij , valid for i+ j even, is:

Iij =
4π

Ri+j

∫ 1

`/r0

Pi(x)Pj(x)dx

− (i+ j)
4π

Ri+j+1
`

∫ 1

`/r0

xPi(x)Pj(x)dx

+
[
(i+ j)2 − 2

] 4π

Ri+j+2
`2
∫ 1

`/r0

x2Pi(x)Pj(x)dx

+ [(i+ j) + 2]
4π

Ri+j+2
`2
∫ 1

`/r0

Pi(x)Pj(x)dx

(C.2.40)

The required Legendre moments are more complicated to calculate explicitly:∫
xmPi(x)Pj(x)dx (C.2.41)

Thus, we’ll directly evaluate I00 and I11. We already know that I01 = I10 =
0, because 1 + 0 is odd. Moments as before can be calculated easily:∫

xP0(x)P0(x)dx =

∫
xdx =

x2

2
+ C∫

x2P0(x)P0(x)dx =

∫
x2dx =

x3

3
+ C∫

xP1(x)P1(x)dx =

∫
x · x2dx =

x4

4
+ C∫

x2P1(x)P1(x)dx =

∫
x2 · x2dx =

x5

5
+ C

(C.2.42)

Using expression (C.2.40) to calculate I00, one gets:

I00 = 4π · 1|1`/r0 − 0− 2 · 4π

R2
`2
x3

3

∣∣∣∣1
`/r0

+ 2 · 4π

R2
`2 · 1|1`/r0 (C.2.43)
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Which evaluates into:

I00 = 4π ·
[
1− `

r0

]
− 8π

3R2
`2

[
1−

(
`

r0

)3
]

+
8π

R2
`2
[
1− `

r0

]
(C.2.44)

The same thing can be done for I11:

I11 =
4π

R2

x3

3

∣∣∣∣1
`/r0

−2· 4π
R3

`
x4

4

∣∣∣∣1
`/r0

+2· 4π
R4

`2
x5

5

∣∣∣∣1
`/r0

+4· 4π
R4

`2
x3

3

∣∣∣∣1
`/r0

(C.2.45)

Which evaluates into:

I11 =
4π

3R2

[
1−

(
`

r0

)3
]
− 2π

R3
`

[
1−

(
`

r0

)4
]

+
8π

5R4
`2

[
1−

(
`

r0

)5
]

+
16π

3R4
`2

[
1−

(
`

r0

)3
]

(C.2.46)
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