

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

ESTUDOS DE FILMES FINOS DE In_2Se_3 POR ESPECTROSCOPIA RAMAN

Jairo Mesa Chaparro

Salvador - BA Novembro de 2015

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

ESTUDOS DE FILMES FINOS DE In_2Se_3 POR ESPECTROSCOPIA RAMAN

Jairo Mesa Chaparro

Dissertação apresentada ao Instituto de Física da Universidade Federal da Bahia como requisito parcial para obtenção do título de Mestre em Física

Orientador: Prof. Dr. Marcus Vinicius Santos da Silva Co-orientador: Prof. Dr. Denis Gilbert Francis David

Salvador - BA Novembro de 2015

Sistema de Bibliotecas da UFBA

Mesa Chaparro, Jairo Estudos de filmes finos de In2Se3 por espectroscopia Raman / Jairo Mesa Chaparro. - 2015.102 f.: il Orientador: Prof. Dr. Marcos Vinicius Santos da Silva. Co-orientador: Prof. Dr. Denis Gilbert Francis David. Dissertação (mestrado) - Universidade Federal da Bahia, Instituto de Física, Salvador, 2015 1. Raman, Espectroscopia de. 2. Geração de energia fotovoltaica. 3. Células solares. 4. Física do estado sólido. 5. Fonons. I. Silva, Marcos Vinicius Santos da. II. David, Denis Gilbert Francis. III. Universidade Federal da Bahia. Instituto de Física. IV.Título. CDD-543.0858 CDU-543.424.2

... todo amor é sagrado e o fruto do trabalho é mais que sagrado...Lembra que o sono é sagrado e alimenta de horizonte o tempo acordado de viver

Beto Guedes

Agradecimentos

Si llegue hasta áca, es por que no estuve solo. Dios estuvo con migo.

Os meus primeiros agradecimentos vão para a universidade Federal de Bahia, em particular para o departamento de física, pelas condições de trabalho e de aprendizagem proporcionado.

Á CNPq pelo suporte financeiro.

Aos professores do departamento de física da UFBA que lecionaram nas disciplinas que cursei durante o mestrado. Teve o privilégio de ter como orientador do mestrado, o professor Dr Marcus Venicius Santos da Silva, que aceito dirigir a presente dissertação impondo-lhe o seu rigor habitual. pela orientação ao longo de todo o trabalho, pelas oportunidades de aprendizagem proporcionadas e pelo conhecimento transmitido, agradeço-lhe.

Agradeço ao Professor e co-orientador Denis G. F. David pela oportunidade de fazer parte do grupo de pesquisa, pelos incentivos e pelas contribuições.

Na universidade federal de Bahia beneficiei do apoio dos meus colegas de trabalho Yury, Adauto, Edwin, Jhon, Rone e Leonardo pela colaboração e troca de experiencias. Colaboraram para que decorresse em bom ambiente.

Obrigado a Patricia pelo amor e apoio moral incondicional.

par terminar gostaria de sublinhar a importância da minha família, em especial meus irmãos, pela motivação e equilíbrio necessário ao longo do trabalho.

ÍNDICE

1	Inti	rodução		
In	Introdução 1			
2			4	
-	2.1	A Camada Buffer na Estrutura da Célula Solar	4	
		2.1.1 Função da Camada Buffer	5	
		2.1.2 Camadas Buffer Alternativos	6	
	2.2	Disseleneto de Indio In_2Se_3	6	
3	Rev	são Teórica	10	
	3.1	Teoria de Grupos	10	
		3.1.1 Operações de Simetria	10	
		3.1.2 Grupos Pontuais Cristalográficos	11	
		3.1.3 Grupos Espaciais de Cristais	11	
		3.1.4 Tabela de Caracteres e suas Informações	12	
		3.1.5 Método de Correlação: Tabelas de Correlação	12	
	3.2	Espectroscopia Raman	15	
		3.2.1 Teoria Macroscópica do Espalhamento Inelástico de Luz por		
		Fônons	17	
3.3 Dispersão Ótica na Matéria		Dispersão Ótica na Matéria	20	
		3.3.1 Equações de Maxwell num Material	20	
		3.3.2 Modelo de Drude-Lorentz de Função Dielétrica	24	
4	Pro	edimento Experimental	27	
	4.1	Preparação da Amostra	27	
		4.1.1 Substrato \ldots	27	
		4.1.2 Limpeza dos substratos	28	
		4.1.3 Eletrodeposição	28	
		4.1.4 Parâmetros de Deposição do IS	33	
	4.2	Recozimento das Amostras	35	
	4.3	Técnicas de Caracterização	36	

		4.3.1	Espectroscopia de Dispersão de Energias	36				
		4.3.2	Difração de raios X	37				
		4.3.3	Espectroscopia Raman	40				
		4.3.4	Medidas de Transmissão e Reflexão	41				
		4.3.5	Microscopia Eletrônica de Varredura	42				
5	Res	ultado	s Experimentais	44				
	5.1	Anális	e por EDS das Amostras de IS	44				
	5.2	2 Difração de Raios-X						
		5.2.1	DRX da Amostra Depositada com Potencial Pulsado	52				
	5.3	Modos	s Vibracionais no IS.	53				
		5.3.1	Fase $\alpha - In_2 Se_3$ (R $\overline{3}$ m)	56				
		5.3.2	Fase $\alpha - In_2Se_3$ (R3m)	61				
	5.4	Classi	Fase $\alpha - In_2Se_3$ (R3II) 6. ificação dos Modos Vibracionais do In_2Se_3 Depositado 65 Espectroscopia Paman da Amostra Eletrodepositada com Po					
		5.4.1	Espectroscopia Raman da Amostra Eletrodepositada com Po-					
			tencial Pulsado.	66				
	5.5	Carac	tencial Pulsado					
		5.5.1	Coeficiente de Absorção	69				
		5.5.2	Gap	70				
		5.5.3	Índice de Refração e Coeficiente de Extinção	71				
		5.5.4	Influência da Espessura na Transmissão	72				
		5.5.5	Caracterização Óptica das Amostras Recozidas	73				
	5.6	Carac	terização Morfológica	77				
Co	onclu	isões		83				

Referências

85

___ii

LISTA DE FIGURAS

2.1	Seção transversal de uma célula solar de tipo heterojunção mostrando a estrutura.	5
3.1	Grafico do espectro Rayleigh, Raman stokes e ante-stokes. $\ .\ .\ .$	16
$4.1 \\ 4.2 \\ 4.3 \\ 4.4$	Gráficos de representação do processo de electrodeposição Representação do voltamograma em que estão indicados ondas anódicas. Gráfico da voltamograma cíclico do IS	29 30 31
4.5	nua e pulsada	32 35
4.6	Reator utilizado como berço para o recozimento de amostras de IS. $\ .$	36
4.7	Gráfico de geração de raios X envolvido na espectroscopia de EDS .	37
4.8	Gráfico de difração de raios X por átomos de uma rede periódica \therefore	38
4.9	Diffractometro de raios X na geometria $\theta = 2\theta$.	39
4.10 4.11	Análise do mapa de EDS para a amostra 1A após o recozido à $400^{\circ}C$.	40 43
5.1	Espectro de EDS da amostra 2A depositada sobre V/SnO_2 e recozida	45
5.9	a 200°C	45
$5.2 \\ 5.3 \\ 5.4$	Espectro de EDS da amostra IA antes e depois do recozimento Espectro de difração de raios-X das amostras de IS como depositado . Difratograma de raio-X obtidos para as amostras como depositadas e	41 49
	recozida a 200, 300 e $400^{\circ}C$	50
5.5	Padrão de difração de raios-X para a fase α rombo édrico do IS (ICDD)	51
5.6	Espectro de difração de raio-X das amostras de IS como depositado a	
	partir de potencial pulsado	52
5.7	Espectros Raman obtido à temperatura ambiente e após do recozi-	
-	mento.	64
5.8	Deconvolução do espectro Raman para o caso da amostra 4A eletro-	C-
FO	depositada com potencial pulsado	60
э.9		08

5.10	Espectro do coeficiente de absorção do In_2Se_3	69
5.11	Gráfico de $(\alpha h\nu)^2$ como uma função da energia do fóton incidente $(h\nu)$	
	para o In_2Se_3 .	70
5.12	Curvas de dispersão de ambos n e k para In_2Se_3 , como depositado	71
5.13	Espectro de transmissão do IS+substrato para diferentes espessuras.	72
5.14	Espectros do coeficiente de transmissão, reflexão do IS para (a) $200^{\circ}C$,	
	(b) $300^{\circ}C = (c) \ 400^{\circ}C$	73
5.15	Espectros do coeficiente de extinção $k(1)$, e índice de reflexão $n(2)$ do	
	IS para (a) $200^{\circ}C$, (b) $300^{\circ}C$ e (c) $400^{\circ}C$	74
5.16	gap do IS para (a) $200^{\circ}C$, (b) $300^{\circ}C$ e (c) $400^{\circ}C$	75
5.17	Imagens do MEV para filmes In_2Se_3 com diferentes concentrações de	
	índio e carga depositada.	78
5.18	Imagens de MEV para a amosta 2A como depositada e recozida a $200^{\circ}C$.	80
5.19	Imagens de MEV para a amosta 6A como depositada e recozida a $300^{\circ}C$.	81
5.20	Imagens de MEV para a amosta 1A como depositada e recozida a $400^{\circ}C$.	82

iv

LISTA DE TABELAS

$3.1 \\ 3.2$	Tabela de caracteres do grupo pontual C_{3v} Degenerescência da espécie ζ do grupo fator	12 14
4.1	Parâmetros de deposição do IS por electrodeposição com potencial continuo.	34
4.2	Parâmetros de deposição de IS por electrodeposição com potencial pul- sado	34
4.3	Parâmetros cristalográficos para o IS	39
5.1	Concentrações dos elementos químicos nas amostras antes e após o recozimento.	46
5.2	Concentrações relativas de In e Se nas amostras antes e após o recozi-	47
5.3	Resumo das propriedades dos picos de difração para as amostras do IS. Fase $\alpha(\mathbf{R})$	52
5.4	Valor do parâmetro LP que reduz o tamanho da célula cristalográfica	53
5.5	Parâmetros cristalográficos para o IS	54
5.6	Informação cristalográfica para várias fases do cristal seleneto de Índio.	54
5.7	Sítios de simetria para os espaços de grupos reservados para a fase $\alpha(R)$.	55
5.8	Sítios de simetria de cada átomo da fase $\alpha(R)$ para R3m e R3m do IS.	55
$5.9 \\ 5.10$	Tabela das especies do grupo do sítio C_{3v} e as translações	56
	dade vibracionais para.	57
5.11	Tabela de caracteres do grupo pontual C_{3v}	57
5.12	Tabela de correlação das especies do grupo espacial C_{3v} para o grupo	
	fator D_{3d} .	58
5.13	Processo de correlação entre o grupo do sítio C_{3v} e grupo fator D_{3d} .	58
5.14	Correlação para a fase $\alpha - In_2Se_3$ (R ³ m).	59
5.15	Fator grupal D_{3d} , translações, e modos acústicos	60
5.16	Tabela de resumo das atividade IR e Raman em $\alpha - IS(\overline{R3m})$	61
5.17 5.18	Tabela de resumo das atividade IR e Raman em $\alpha - IS(R3m)$ Modos dos Fônons, de acordo com as simetrias dos modos do grupo	62
	$R3m \in R\bar{3}m$.	65

65
66
71
76

___vi

Resumo

Neste trabalho aplicamos a técnica de espectroscopia Raman para o estudo da estrutura cristalina bem como o comportamento dos modos vibracionais acoplados do In_2Se_3 (IS) em forma de filmes finos eletrodepositadas em diferente espessuras sobre substrato de vidro recoberto por SnO2:F (FTO). Além disso outras técnicas de caracterização (DRX, EDS, MEV e Óptica), foram utilizadas com objetivo de complementar as informações a respeito dos filmes. O processo de preparação dos filmes envolveu dois estágios. No primeiro, a deposição de In-Se foi feita sob potencial controlado usando um potencióstato-galvanostato e uma célula eletroquímica de três electrodos, contendo solução aquosa de mistura ternária à temperatura ambiente preparada a partir da dissolução dos compostos $In_2(SO_4)_3$ e SeO_2 , com concentrações diversas em eletrólito de suporte de $NaBF_4$. No segundo estágio, as amostras foram submetidas a um tratamento térmico às temperaturas de 200, 300, e $400^{\circ}C$, durante 30 minutos, sob um fluxo de nitrogênio entre 20 e 25ml/min. O tratamento térmico sob essas condições, variou não só a estrutura cristalina como também eventualmente a composição dos filmes durante o processo, sendo necessário com isso avaliar a proporção dos elementos existentes antes e depois do recozimento. Para tanto, as análise de difração de raios-X (DRX) e Espectroscopia Raman indicaram que as amostras apresentam estrutura α -Romboédrica, e por tanto pertence ao grupo de simetria R3m cujos modos normais de vibração no centro da zona de Brillouin são dados pelas especies de simetria $A_{1g} \in E_g$ das representações irredutíveis obtidas a partir do método teórico de correlação. A espectroscopia de energia dispersiva de raios-X (EDS) das amostras como depositadas, indicaram a presença dos constituintes In e Se, além de uma pequena emissão relacionada aos componentes do substrato. Através das medidas ópticas pôde-se classifica o material como semicondutor. Por último, a caracterização morfológica por Microscopia Eletrônica de Varredura (MEV), mostrou que em função da carga depositada, concentração química e temperatura de recozimento, os grãos dos filmes produzidos sobre substrato de vidro+FTO, são nanoestruturados e distribuídos homogeneamente na superfície analisada. Este fato produziu uma melhora na cristalinidade do material.

Palavras Claves: Eletrodeposição; Seleneto de índio; Espectroscopia Raman; Fônons

Abstract

In this work we apply the Raman spectroscopy technique for the study of the crystal structure and the behavior of the coupled vibrational modes of the In_2Se_3 (IS) in form of thin films of different thicknesses electrodeposited on glass substrate covered with SnO_2 : F(FTO). Also others characterization techniques (XRD, EDS, SEM and Optical), were used with the objective to complete the information about the films. The process for the preparation of films involved two stages. At first, the deposition of *In-Se* was carried out under controlled potential using a potentiostatgalvanostat and one electrochemical cell with three electrodes containing aqueous ternary mixture at room temperature prepared from the dissolution of $In_2(SO_4)_3$ and SeO_2 compounds with various concentrations of $NaBF_4$ supporting electrolyte. In the second stage, the samples were subjected to a heat treatment at temperatures of 200, 300 and $4000^{\circ}C$ during 30 minutes under a nitrogen flow of 20 to 25ml/min. Heat treatment under these conditions varied not only the crystal structure as well as possibly the composition of the films during the process, by this way, it was necessary to evaluate the proportion of the existing elements before and after annealing. Therefore, the x-ray diffraction analysis and Raman Spectroscopy indicated that the samples had a structure (α -rhombohedral) and therefore belongs to the symmetry group R3m whose normal vibration modes in the center of the Brillouin zone are given by symmetry species A_{1g} and E_g of the irreducible representations obtained from the theoretical method of correlation. The *EDS* of the as-deposited samples, indicate the presence of In and Se components, including a small emission related to the components of the substrate. Through optical measurements it was possible to classify the material as a semiconductor. Finally, the morphological characterization by Scanning Electron Microscopy (SEM) showed that depending on the deposited charge, stoichiometry and annealing temperature, the grain of the films produced on glass substrate+FTO are nanostructured and distributed homogeneously in the analyzed surface. This fact produced an improvement in the crystallinity of the material.

Keywords: Electrodeposition; Indium selenide; Raman spectroscopy; phonons.

capítulo 1

ا INTRODUÇÃO.

Com o crescimento populacional e econômico há o aumento da demanda por energia elétrica o que gera algumas preocupações como a degradação ambiental, racionamento de energia e nos preços das tarifas. Com isso surgem pesquisas de novas tecnologias para suprir o fornecimento de energia elétrica. A geração de energia provinda do sol, por exemplo, vem sendo vislumbrada para resolver essas questões por ser limpa e renovável. A energia solar atualmente utilizada pelo homem é uma das antigas fontes alternativas de energia para geração de eletricidade e calor. Mas para viabilizar o uso desta fonte de energia são necessários painéis cujas células solares devem satisfazer duas condições: elevada eficiência de conversão e baixo custo de fabricação. As tecnologias solares que mais se aproximam do punto de vista financeiro são células de filmes finos de heteroestruturas $Cu(In, Ga)Se_2$ (CIGS) [1]. Porém, em comparação com outras tecnologias de filmes finos, as células solares CIGS mostraram o maior potencial em termos de eficiência (10 - 12%). Este tecnologia de filmes finos, requer quantidades mínimas de material, e permite a produção comercial de painéis solares mais flexível, em comparação com os painéis fabricados com silício monocristalino ou policristalino[2].

Nos últimos anos, a tecnologia de filmes finos tem apresentado crescimento significativo através da redução dos custos de produção. Embora as células solares a base de filmes finos de $Cu(In, Ga)S_2$, apresentam baixo custo de produção e alta estabilidade, esta tecnologia tem restrição do ponto de vista ambiental de modo que elas incorporam em sua estrutura, uma camada fina de sulfato de cadmio (CdS) (50nm) [3]. Este material é depositado por meio da técnica de deposição de banho químico (CBD), que é muito apropriado para a deposição sobre substrato de grande área. No entanto, a aplicação de CBD para o crescimento da camada de CdS na produção em grande escala das células solares representa um grave problema ambiental devido à grande quantidade de Cd contendo resíduos e a utilização de amoníaco no processo [4, 5]. Existem vários trabalhos recentes que relatam avanços importantes sobre a solução parcial do problema ambiental [4–6]. Por estas razões, é importante investigar outros materiais semicondutores com as propriedades adequadas para substituir a camada tampão de CdS, nas células solares de heteroestrutura.

Vários materiais semicondutores têm sido investigados com o objetivo de substituir o CdS como camada tampão (buffer) [7]. Um dos materiais mais promissores é o In_2Se_3 , devido à suas propriedades elétricas e ópticas que são de grande interesse para aplicações fotovoltaicas em forma de filme finos [8]. É um semicondutor tipo ncom banda óptica de energias (gap) variando de 1, 4 a 2, 19eV, além disso, no processo de crescimento pode apresentar certo número de modificações. Quatro fases são relatadas a respeito deste material: α , β (Romboédrica) ou fases γ , δ (Hexagonais). Mas apenas a fase γ tem banda de energia adequada para ser utilizada como camada buffer em heterojunções de células solares [9].

Varias técnicas têm sido utilizadas para crescer filmes finos de Seleneto de Índio tais como: electrodeposição [10–13], evaporação instantânea [14], evaporação sequencial [15] e co-evapração de In e Se [16]. A primeira possui grandes vantagens já que é totalmente livre de poluição, uma vez que evita o uso de qualquer gás toxico ao vapor. Além disso, possui melhor viabilidade econômica com processo mais simples e que pode atingir níveis industriais de produção.

Em virtude disso, neste trabalho, foram depositados filmes finos de In_2S_3 policristalinos por meio da técnica de electrodeposição. Os filmes passaram pelo processo de recozimento em atmosfera de Nitrogênio, às temperaturas de 200, 300 e 400^oC. Em vista disso as modificações estruturais, estequiométricas, ópticas e morfológicas ocorridas nas amostras como consequência do processo de deposição e recozimento deve ser avaliadas.

Neste contexto, a Espectroscopia Raman, será usado neste trabalho, inicialmente para estudar as propriedades estruturais de filmes finos de seleneto de Índio (In_2Se_3) , a partir do comportamento vibracional causado pela excitação da radiação das linhas de 532.13nm e 1064nm do laser, com energia menor à ordem de sua excitação eletrônica. Para esta energia de excitação o espalhamento inelástico de luz é chamado Raman não ressonante. Além das análise da Espectroscopia Raman,, foram aplicadas também as técnicas de EDS, DRX, Espectroscopia Óptica de transmissão e reflexão e MEV, com objetivo de complementar as informações a respeito do filmes de In_2Se_3 (SI) crescido por eletrodeposição.

A organização geral deste trabalho está dividida em quatro partes: No capitulo II é apresentada a importância da camada buffer na estrutura da célula solar de heterojunção assim como a função que está cumpre na mesma. Além disso uma breve descrição do estado da arte do In_2Se_3 , seu principio de funcionamento e a sua estrutura relatadas.

No capítulo *III* faz-se uma discussão teórica sobre teoria de grupos, método de correlação, a técnica de espectroscopia Raman e fenômenos relacionados com a dispersão Ótica na matéria.

No capítulo IV faz-se uma descrição do aparato experimental utilizado nas medidas de espectroscopia Raman, bem como a descrição das amostras segundo o seu processo de fabricação. O funcionamento das técnicas de caracterização DRX, MEV/EDS, Difração de raios X e espectroscopia óptica utilizadas nesta dissertação foram explicadas brevemente neste capítulo.

No capitulo V são apresentados os resultados obtidos das caracterizações de, composição química, estruturais, ópticas e morfológicas das amostras de IS acompanhadas de seus análises. Além apresenta-se o desenvolvimento do método de correlação aplicado à estrutura α -Romboédrica com grupos espacias de cristais R3m, R3m.

No capitulo VI são apresentadas as principais conclusões do trabalho realizado.

CAPÍTULO 2

2.1 A Camada Buffer na Estrutura da Célula Solar

As células solares de calcopirita são dispositivos de heterojunção, isto é, a junção P-N é formada entre um material semicondutor do tipo P (absorvedor) e outro tipo N (buffer/TCO). A junção P-N forma um campo elétrico interno que gera uma diferença de potencial formando uma zona de carga espacial (ZCE) ou região de depleção de portadores minoritários.

Fótons com energia maior ou igual a energias da região proibida (gap) da junção P-N, são absorvidos pelo mesmo. Esta energia é utilizada para excitar os elétrons da banda de valência para a banda de condução, criando pares elétron buraco que podem ser transportados por meio de processos de difusão e arrastre para um circuito externo, gerando assim uma corrente. Além dos processos de difusão e de arraste, existem outros processos competitivos que podem reduzir a fotocorrente final. São alguns deles:

- 1. Captura de elétrons em estados superficiais gerados pela presença de ligações incompletas na superfície do material.
- 2. A recombinação de elétrons com buracos no volume do material.
- 3. Captura(recombinação) de elétrons com estados de impureza
- 4. Transporte de portadores por difusão.
- 5. Captura (recombinação) de portadores em estados interfaciais.
- 6. Transporte de portadores por meio de processos de tunelamento.

Em dispositivos fotovoltaicos tipo heterojunção de tecnologia de filme fino, o principal mecanismo de perda é a recombinação em estados interfaciais 5., que são formados como resultado de tensões mecânicas que ocorrem devido à diferença entre as constantes da rede dos materiais semicondutores que constituem a interface P-N.

A fim de reduzir as perdas de fotocorrentes nas células tipo heterojunção, estas são fabricadas a partir da estrutura de camada absorvedora e janela óptica. A figura 2.1 mostra-se a seção transversal de uma célula de heterojunção com uma camada absorbedora de tipo P, uma camada buffer de tipo N e condutores externos que ligam a camada N à P, para produzir o fluxo de elétrons através de um circuito externo. Enquanto a luz incidir na célula, manter-se á este fluxo.

Figura 2.1: Seção transversal de uma célula solar de tipo heterojunção mostrando a estrutura.

2.1.1 Função da Camada Buffer

Junto com a camada de oxido transparente condutor (TCO) a camada buffer forma a janela óptica e sua principal função é facilitar que a maior quantidade de radiação solar atinga à camada absorvedora. Além disso junto com a camada absorvedora forma o campo elétrico na zona ZCE que dá lugar à diferença de potencial entre os contatos do dispositivo.

Simultaneamente, a camada *buffer*, serve como uma ligação mecânica entre a camada absorbedora e a camada de *TCO*. Este fato melhora o desempenho da célula solar evitando a rápida recombinação de pares elétrons-buracos na interface dos semicondutores [1]. O aumento da eficiência das células solares de filme fino depende muito da qualidade e espessura da camada *buffer*. O gap deve ser alto para uma boa transmissão óptica na região do visível produzindo a mínima perda de energia por absorção. Além disso, a camada deve ser ultra-fina (menor de 100nm de espessura) para garantir que um porcentagem elevado de radiação atinga a camada absorbedora [3]. Por outro lado deve ser capaz de dirigir a carga foto-gerada com um mínimo de perdas de cargas pela recombinação e deve transportar a fotocorrente gerada para um circuito exterior com resistência elétrica mínima.

2.1.2 Camadas Buffer Alternativos

Os candidatos para o material buffer alternativo devem cumprir quatro propriedades comuns:

- 1. O material deve ser do tipo N, a fim de formar uma junção P-N com a camada absorbedora de tipo P (CIS).
- 2. O gap deve ser grande para a absorção de luz limitada.
- 3. O processo de deposição deve ser de baixo custo e adequado para a deposição de grande área. Além disso, a técnica deve ter capacidade de passivar os estados de superfície da camada absorbedora.
- 4. O material escolhido como camada *buffer* deve fornecer uma alinhamento da banda de condução com a camada absorvedor de $Cu(In, Ga)Se_2$.

Os candidatos mais promissores para cumprir essa função são: CdS, ZnS, ZnSe, ZnO, (Zn, Mg)O, $Na(OH)_3$, In_2S_3 , In_2Se_3 e $InZnSe_x$.

2.2 Disseleneto de Indio In_2Se_3 .

O seleneto de Índio In_2Se_3 é um material pertencente à família de compostos $A_2^{III} B_3^{VI} (A_2^{III} = Ga, In, Ti)$ e $(B_3^{VI} = S, Se, Te)$ e pode apresentar-se no estado amorfo ou cristalino [21]. Este material tem sido objeto de muitos estudos recentes [22], devido à suas propriedades elétricas e ópticas que são de grande interesse para aplicações fotovoltaicas em forma de filme finos. Pode ser utilizado como camada buffer [3] (em CIS/ In_2Se_3) em células solares, dependendo do gap óptica do filme. Por exemplo, $\gamma - In_2Se_3$ com banda de gap ampla de 1,8eV [23] é utilizado como camada buffer, enquanto $\beta - In_2Se_3$ com banda de gap de 1,55 eV pode ser utilizado como como uma camada absorvedora na fabricação de células solares.

Várias literaturas abordam sobre a estrutura de In_2Se_3 , porém em muitos caso confuso e com alguns aspectos contraditórios. Portanto, somente as informações mais razoáveis e comuns serão reproduzidos aqui.

Abaixo de $495^{\circ}C$ a estrutura cristalina é feita em camadas, onde cada camada é composta por cinco planos atômicos de $Se \in In$ na sequência, Se - In - Se - In - Se, vinculadas por forças moleculares fortes. A interação entre as camadas adjacentes é muito mais fraca e acredita-se ser do tipo Van der Wall s¹ [24]. Os átomos de Se em cada plano construí uma estrutura triangular com constantes de rede a = 4,025Å. Os três planos do Se são empilhados em sequências ABA(hcp) ou ABC(fcc), cada camada possuindo uma espessura de 9,6Å. Os átomos de In ocupam os sítios te-traédricos ou octaédricos ou mais provavelmente, algumas posições intermediais, não ideais. As camadas estão empilhadas na sequência AAA, ABAB ou ABC, dando un vetor de estrutura perpendicular às camadas de c = 9, 6Å, c = 19, 2Å ou c = 28, 5Å, respectivamente [25].

O IS constitui normalmente uma estrutura defeituosa na qual alguns dos sítios, cristalograficamente equivalentes, estão parcialmente ocupados, e as redes têm locais vagos. Este tipo de material tem uma variedade de propriedades ópticas e elétricas que o faz interessante para ser aplicado em meios de gravação ópticos [26], sensores de gás [27], dispositivos de comutação [28], em detectores para radiação ionizante [29] e como camada *buffer* nas aplicações de células solares na forma de filmes finos. Neste tipo de aplicação o In_2Se_3 (semicondutor tipo N) deve formar uma junção *P-N* com a camada absorvedora $CuInSe_2$ (CIS), que é um semicondutor tipo *P*. Por tal razão, a camada *buffer* deve possuir características não muito distintas em relação ao material absorvedor com propriedades estruturais e eletrônicas bem próximo entre si, permitindo um contato elétrico de baixa resistência.

O comportamento do material durante a interação com a radiação electromagnética pode ajudar a realizar sua caracterização estrutural e outras propriedades físicas. Diversas maneiras de se estudar a interação do material com a radiação electromagnética tem sido utilizadas, dentro elas, a interação com radiação electromagnética na região dos raios X, através na qual é possível determinar se existem e quais são as possíveis fases cristalinas do material. O comportamento frente à radiação electromagnética nas regiões do infravermelho, visível e ultravioleta, permite avaliar o gap de energia.

É difícil produzir Seleneto de Índio monofásico e estequiométrico, devido à co-

 $^{^1{\}rm A}$ interação de Van der Wall's é também atrativa. Surge espontaneamente por causa das flutuações da energia associada ao dipolo elétrico.

existência de várias fases como InSe, In_2Se_3 , In_4Se_3 , In_6Se_3 e In_6Se_7 [30]. Por exemplo, do composto In_2Se_3 , há muitos relatos sobre as estruturas cristalinas e transformação da fase. Jasinski [31] comenta que há quatro fases relativamente bem conhecidas deste composto $(\alpha, \beta, \gamma, \delta)$ e, recentemente uma nova fase k de In_2Se_3 foi descoberto [16]. Ainda pouco se sabe sobre suas propriedades. No trabalho de Lyu [32] comenta que a fase α é estável a temperatura ambiente, e apresenta estrutura em camadas, transformando-se para a fase β à 200°C, e é estável entre 200°C e 650°C possuindo estrutura romboédrica. A fase γ é estável entre 650 e 750°C e possui estrutura Wurtzite defeituosa, a fase δ pode aparecer acima de 750°C com estrutura anisotrópica (sem camadas) provavelmente de decomposição na fase In_6Se_3 . O trabalho feito por Ching [33] comenta também que o IS cresce em cinco modificações cristalinas: $\alpha, \beta, \gamma, \delta \in k$. Mas, ele comenta que a fase α forma duas camadas hexagonais (2H), a β com três camadas romboédricas (3R) e a fase γ com estrutura de Wurtzite defeituosa hexagonal (H). A fase α pode ser Romboédrica ou Hexagonal [34]. Para o tipo Hexagonal o grupo espacial $P6_3/mmc$ foi atribuído [34]. Não há acordo sobre o grupo espacial do tipo Romboédrico da fase $\alpha - In_2Se_3$. De acordo com Popovic [34, 35], o grupo espacial do Romboédrica $\alpha - In2Se_3$ é centrossimétrico R3m (N_0 166), e a estrutura contém uma molécula cristalograficamente independente por células unitárias de Bravais $(Z^B = 1)$. De acordo com Osamura [36], a fase Romboédrica da $\alpha - In_2Se_3$ tem uma estrutura não centrossimétrica com grupo espacial R3m $(N_0 160)$ com uma unidade de formula por célula de Bravais.

Propriedades estruturais de filmes de fase única de $k - In_2Se_3$ e $\gamma - In_2Se_2$ foram investigadas por Jasinki [31]. Ambas filmes foram policristalino mas sua microstrutura difere consideravelmente. O parâmetro de rede de k foram obtidos com sendo 19, 35Å e 6, 15Å para $\gamma - In_2Se_3$ e 19, 85Å e 7, 05Å para $k - In_2Se_3$. A comparação entre estes dois materiais indicam que k tem uma unidade celular significativamente maior e uma estrutura mais semelhante ao da fase α . Os estudos recentes da estrutura feito por Xiaohui [37] dizerem que todas as estruturas cristalinas do In_2Se_3 podem ser divididas em duas categorias. A fase de estrutura de camadas e a fase de vagas ordenadas em forma de parafuso (VOSF). Ambas as estruturas de fase são baseada na estrutura de junção tetraédrica e um terço dos sítios de cátions estão vagos no composto In_2Se_3 a fim de satisfazer a regra das hibridações do octeto $sp^{3/2}$. O mesmo opina Marsillac [22] onde comenta que a estrutura em camadas permite a interação de átomos ou moléculas de modo que as propriedades físicas podem ser alteradas sem destruir a estrutura inicial. Quanto às diferentes fases do In_2Se_3 , de Groot [16]

²É chamado de híbrido sp^3 , porque eles vêm da combinação de um orbital S e três orbitais P.

O trabalho feito por Gordillo [3], por exemplo, descreve a investigação de células solares basadas em CIS com uma nova camada buffer (In_xSe_y) . Os estudos foram dedicados à determinação das condições de deposição de filmes In_xSe_y , com o fim de ser utilizado como substituto da camada buffer de CdS que é usualmente empregado no fabrico deste tipo de dispositivos. Medidas de transmitância e difração de raios X, mostrou que os melhores resultados podem ser obtidos usando filmes de Seleneto de Índio crescidos na fase In_2Se_3 . Os resultados podem ser comparados com os das células fabricadas utilizando a camada amortecedor de CdS. Com relação ao gapóptico Gordillo comenta que para espessuras maiores a $1\mu m$, o gap óptico do filme In_xSe_y permanece constante. O valor mais baixo de E_g , que foi encontrado para filmes de IS, foi de 1,75eV.

3.1 Teoria de Grupos

Um dos conceitos mais importantes e bonitos em física é o conceito de simetria. Frequentemente, considerações de simetria levam à leis de conservação de alguma grandeza física, como, por exemplo, a conservação de momento linear devido à simetria de translação no espaço, ou a conservação da energia devido à simetrias de translação no tempo. A Teoria de Grupos aplicada à matéria condensada é uma importante ferramenta matemática que faz uso de argumentos de simetria para estudar diversas propriedades de sistemas físicos de interesse, como, por exemplo, o estudo de propriedades eletrônicas e vibracionais de moléculas e sólidos [38]. Esta seção é dedicada à uma breve exposição das ferramentas da teoria de grupos para ser aplicada ao caso do IS (In_2Se_3) , a fim de determinar quais de seus modos vibracionais são ativos no Raman. Esta aplicação será feita no capítulo 5.

3.1.1 Operações de Simetria

Uma operação de simetria consiste em mover um corpo (molécula, sólido,....) de tal maneira que a posição final após o movimento é indistinguível da inicial. Isto é, essa operação é tal que deixa o corpo numa configuração geométrica equivalente daquela que estava antes de aplicar a operação. Um elemento de simetria é uma entidade geométrica que pode ser un ponto, uma reta ou um plano com relação a qual se efetua uma ou mais operações de simetria.

3.1.2 Grupos Pontuais Cristalográficos

Um grupo pontual se define como o conjunto de operações de simetria existentes numa rede cristalina, onde existe um ponto cuja posição no espaço permanece inalterada, seja qual for o número de operações de simetria que possam ser aplicadas à mesmo. Uma denominação equivalente, bastante frequente, é grupo de simetria. Um grupo de simetria deve ser claramente diferenciado de um grupo Grupo Espacial, o qual descreve um conjunto de elementos de simetria que contém elementos de translações [39].

Na teoria de grupos encontram-se 32 grupos pontuais, os quais apresentam todas as possíveis simetrias de um cristal. Esses 32 grupos pontuais podem ser divididos em duas categorias: grupos de rotações simples nos quais há um único eixo de rotação de ordem maior que as dos outros, e grupo de alta simetria, nos quais há mais de um eixo de rotação de maior ordem [40]. Esses 32 tipos de simetria são denominados Grupos pontuais cristalográficos, ou, mas adequadamente, Classes de cristais (que podem ser ordenadas aos sete sistemas cristalinos conhecidos). Ver ref. [39] Tabela 4.3.

3.1.3 Grupos Espaciais de Cristais

O grupo de simetria de um cristal são chamados de grupo espacial e estão constituído pelas combinações de todas as operações de simetria dos 32 grupos pontuais cristalográficos com as operações de simetrias adicionais como: rotação-translação helicoidal em um eixo, deslizamento-espalhamento em um plano e as translações (primitivas). A partir desta obtém-se para cristais um total de 230 grupos espaciais. O símbolo do grupo espacial descreve totalmente a simetria de um cristal, já que, além do grupo pontual, informa também a simetria da respectiva rede de Bravais. Os 230 grupos espaciais estão listados na Tabela 4,5 da ref. [39].

As operações de translações são formadas pelos vetores da rede de Bravais do cristal. O conjunto de todos os vetores de *Bravais* de um cristal é um subgrupo do grupo espacial chamado de grupo translacional. Agora, afastando todas as translações do grupo espacial obtém-se o grupo fator, que é muito importante para a análise de um sistema cristalino uma vez que limita o problema apenas à sua célula unitária. Ademais, a simetria do grupo fator é a mesma do ponto de mais alta simetria do espaço recíproco, o ponto $\Gamma(k = 0)$, indispensável para análise de muitos efeitos físicos presentes em semicondutores.

3.1.4 Tabela de Caracteres e suas Informações

Uma tabela de caracteres resume as principais características de simetria de un grupo pontual. As espécies de simetria estão ordenadas na primeira coluna, e a correspondente representação irredutível para todas as classes de operadores do grupo pontual encontra-se na segunda coluna. Na terceira coluna estão listados os graus de liberdade translacionais, vibracionais e rotacionais das moléculas pertencentes ao grupo pontual, nas respectivas espécies de simetria em que ocorrem. A atividade de vibrações ativas no infravermelho está associadas às espécies de simetria dos vetores translacionais. Na quarta coluna da tabela de caracteres encontra-se as transformações da polarizabilidade, ou o produto das translações, que estão associadas à atividade Raman: apenas espécies de simetria em que ocorrem combinações ou produtos de χ apresentam atividade Raman. No grupo pontual C_{3v} , por exemplo (Tabela 3.1), modos vibracionais pertencentes às espécies A_1 e E são ativos no infravermelho e no Raman, uma vez que estas espécies contêm os vetores translacionais (terceira coluna) e transformações da polarizabilidade (quarta coluna).

Tabela 3.1: Tabela de caracteres do grupo pontual C_{3v} para a simetria local do Índio na fase α -IS______

C_{3v}	Е	$2C_3$	$3\sigma_v$		
A_1	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	-1	R_z	
Е	2	-1	0	$(\mathbf{x}, \mathbf{y}) \ (R_x, R_y)$	$(x^2 - y^2, xy)(xz, yz)$

3.1.5 Método de Correlação: Tabelas de Correlação

Para aplicar a teoria de grupos no estudo dos modos vibracionais do In_2Se_3 , o primeiro passo é portanto, determinar a simetria de sua célula unitária, ou equivalente, determinar a quais grupos de pontos os átomos de In_2Se_3 pertencem. Para isto se recorreu ao método de correlação, que permite obter o número de modos para cada grupo espacial em particular. Este método é basado na identificação dos locais ocupados pelos átomos do grupo espacial do cristal. O método de correlação discutido por W. G. Fateley [41] e em vários livros [42–44] que tratam vibrações de rede, consiste em:

- 1. Conhecer a estrutura cristalina.
- 2. Identificar o número de moléculas por espaço de célula de Bravais.

- 3. Conhecer o sítio de simetria de cada átomo na célula de Bravais.
- 4. Fazer a correlação do grupo do sítio para o grupo fator.

Para o caso da correlação do grupo do sítio para o grupo fator depois de haver encontrado o sítio de simetria para cada átomo; deve-se:

a) \checkmark Identificar a espécie de simetria para cada conjunto de átomos deslocando-se no sítio. Estes deslocamentos se tornaram em vibrações da rede no cristal.

b) \checkmark conhecendo as espécies do sítio para estes deslocamentos, as tabelas de correlação relacionarão cada espécie do grupo do sítio com uma espécie do grupo fator. Esta correlação identifica explicitamente as espécies da vibração da rede em cristais e permite ainda mais a predição da atividade IR ou Raman.

As representações irredutíveis dos modos vibracionais Γ^{vib} são encontradas através das correlações entre os vários grupos dos sítios e o grupo fator do cristal.

$$\Gamma_{vib}^{crist} = \Gamma^{crist} - \Gamma^{acus} \tag{3.1}$$

onde Γ^{acus} é dada pelas representações das componentes $x, y \in z$ do vetor de translações. Esta é diretamente encontrada nas tabelas de caracteres dos grupos de pontos, enquanto Γ^{crist} dá o número de vibrações da rede de cada uma das espécies do grupo fator. O total de representações irredutíveis do cristal Γ^{crist} é encontrado através dos caracteres da transformação de equivalência dada pelo número de átomos da célula unitária que permanece invariante após uma determinada operação de simetria do grupo ser efetuada.

$$\Gamma^{cristal} = \Gamma_{\text{Eq.conjunto 1}} + \Gamma_{\text{Eq.conjunto 2}} + \dots$$
(3.2)

onde $\Gamma_{Eq.conjunto}$ é construída da seguinte forma:

$$\Gamma_{Eq.conjunto} = \sum_{\zeta} a_{\zeta}.\zeta, \qquad (3.3)$$

o termo a_{ζ} , é o número de vibrações da rede do conjunto equivalentes de átomos de espécies ζ do grupo fator.

$$a_{\zeta} = \sum_{\gamma} a_{\gamma} \tag{3.4}$$

onde a_{γ} vai representar os graus de liberdade que contribuíram por cada sitio de espécie γ para o grupo fator de especie ζ . O valor de a_{γ} pode ser calculado como se

segue.

$$f^{\gamma} = a_{\gamma} \sum_{\zeta} C_{\zeta} \tag{3.5}$$

enquanto C_{ζ} é a degenerescência da espécie ζ do grupo fator. Os valores habituais de C_{ζ} estão resumidos a seguir na Tabela 3.2

nerebeenena da especie			
Especies	Valor de C		
А	1		
В	1		
Ε	2		
F	3		
G	4		
Η	5		

Tabela 3.2: Degenerescência da especie ζ do grupo fator.

O termo f^{γ} representa os graus de liberdade vibracional presentes em cada sítio de espécie γ . Este pode ser calculado como se segue, onde n é igual ao número de átomos (íons ou moléculas) em um conjunto equivalente.

$$t^{\gamma}.n = f^{\gamma} \tag{3.6}$$

na qual o termo t^{γ} representa número de translações num sítio de espécie γ . Este número pode tomar os valores de zero, um, dois ou três, dependendo se nenhum, um, dois, ou três translações estão presentes nos sítios de espécie γ , respetivamente. Esta está prontamente disponível a partir das tabelas de carácteres (ver ref. [39, 40]).

Agora para o caso de R^{γ} , que representa o número de rotações incluídas no sítio de espécie γ , uma vez mais este valor irá ser zero, um, dois, ou três. As tabelas de caracteres em ref. [39, 40] identificam claramente as rotações como R_x, R_y, R_z . Os graus de liberdade rotacional presentes en cada espécie γ pode ser calculado através da modificação da Eq.3.6 para dar

$$f_R^{\gamma} = R\gamma.n \tag{3.7}$$

Com a intensão de corroborar a confiabilidade dos cálculos da correlação, a verificação das seguintes equações vai ajudar a evitar erros.

$$3n = (\text{graus de liberdade})_{sitio} = \sum_{\gamma} f^{\gamma}$$
 (3.8)

$$3n = (\text{graus de liverdade})_{\text{fator de grupo}} = \sum_{\zeta} a_{\zeta} C_{\zeta},$$
 (3.9)

3.2 Espectroscopia Raman

Quando a radiação eletromagnética de frequência $h\nu$ incide sobre um meio material, su a energia pode ser transmitida, absorvida ou espalhada¹. O espalhamento de ondas eletromagnéticas por um material é causado basicamente por inomogeneidades no interior do meio, que podem ser estáticas tais como defeitos na estrutura cristalina, ou dinâmicas por conta das flutuações da densidade de carga devido à presença de excitações elementares. A radiação espalhada por flutuações estáticas possui a mesma energia que a radiação incidente (espalhamento elástico), enquanto a radiação espalhada por flutuações dinâmicas pode ter energia maior ou menor que a radiação incidente (espalhamento inelástico). O primeiro tipo de espalhamento é chamado de espalhamento Rayleigh. O espalhamento inelástico de luz pelas ondas acústicas foi proposto teoricamente por Brillouin [20]. Enquanto o espalhamento inelástico por outras excitações elementares do meio é chamado de espalhamento Raman. Esse fenômeno foi predito por o Físico Adolf Gustav Stephen Smekal em 1923 mas, foi comprovado experimentalmente pela primeira vez na década de 1928 pelo físico indiano Chandrasekhara Venkata Raman e Krishnan [39].

O trabalho realizado por Raman e colaboradores, no estudo do espalhamento inelástico da luz do sol por vibrações moleculares em líquidos, deu origem à técnica que leva seu nome e lhe concedeu o Prêmio Nobel de Física do ano de 1930.

Hoje a espectroscopia Raman se mostrou como uma técnica experimental poderosa na investigação de propriedades de materiais e principalmente nas excitações elementais presentes nos sólidos, dentre as quais podemos destacar: fônons, plásmons, mágnetons, etc [20].

¹Os processos de reflexão e transmissão correspondem à processos de espalhamento elástico da luz, onde há interferência construtiva em apenas uma certa direção do espaço.

Em um espectrômetro Raman, a amostra é irradiada com uma fonte intensa de radiação monocromática, geralmente na região visível do espectro. Normalmente a frequência desta radiação é muito maior que a frequência vibracional, porém menor do que a frequência para a ocorrência de transições eletrônicas. A radiação espalhada pela amostra é analisada por um espectrômetro de alta resolução. A luz espalhada possui uma energia ligeiramente diferente da luz incidente. A diferencia de energia correspondes a níveis vibracionais do cristal e é representada através de um gráfico da intensidade da luz espalhada pela amostra em função da diferencia entre as frequências da radiação incidente e da radiação espalhada (ver Figura 3.1). Essa diferença é chamada de deslocamento Raman, e seu valor é geralmente dado em unidades de comprimentos recíprocos (cm^{-1}) .

Figura 3.1: Ilustração mostrando um espectro Raman típico de um material. (a) O pico mais intenso corresponde ao espalhamento elástico (Rayleigh). (b) As componentes Stokes correspondem ao espalhamento relacionado à criação de excitações elementares no material. Já as componentes anti-Stokes correspondem à destruição de excitações. No eixo das obscissas são mostradas duas escalas. A superior é uma escala relativa à radiação incidente e, a inferior é uma escala absoluta e expresa o comprimento de onda da luz.

Respeito ao espalhamento de luz em gases o líquidos, temos que os níveis de energia são significativamente diferentes dos materiais cristalinos que se comportam como si todo a rede sofresse vibrações, produzindo assim um efeito macroscópico cujo modos normais vibracionais são denominamos fônons. As componentes da luz espalhada devido à criação de um fônon, são chamadas de componentes Stokes, enquanto que àquelas relacionadas à aniquilação de um fônon, são denominadas componentes anti-Stokes. Em espectroscopia Raman é rotineira a terminologia de fônons acústicos e ópticos, os primeiros ainda subdividindo-se em fônons LA e TA (acústico longitudinal e acústico transversal) e os segundos em LO e TO (ótico longitudinal e ótico transversal). Fônons representam uma versão da mecânica quântica para os modos vibracionais normais. Fônons *acústicos* são assim chamados por que correspondem a ondas sonoras na rede cristalina de um metal, em razão de sua baixa frequência. Fônons óticos porque ocorrem em cristais com mais de um átomo na cela elemental e apresenta sempre uma mínima frequência vibracional, mesmo para baixas frequências[39].

Existem duas teorias para abordar os aspectos teóricos do espalhamento Raman causado por qualquer tipo de excitação elemental. A primeira, chamada de teoria macroscópica, é apropriada para tratar o espalhamento de luz por meios contínuos, onde, a radiação eletromagnética ao incidir no material, induz uma combinação dos momentos de dipolo atômicos microscópicos, resultando em uma polarização macroscópica \vec{P} . As excitações elementares do meio podem induzir a oscilação do vetor \vec{P} em uma frequência diferente da frequência da luz incidente, dando origem então ao espalhamento inelástico da luz. Para o caso do tratamento microscópico, o meio espalhador é considerado como composto por átomos ou moléculas, sendo tratado dentro do contexto da Mecânica Quântica. A interação entre a radiação e a matéria é descrita por Hamiltonianos específicos. Na próxima subseção, trataremos do caso especifico do espalhamento macroscópico de radiação em cristais devido às vibrações da rede cristalina (fônons). Uma generalização do tipo macroscópico está feita em[20].

3.2.1 Teoria Macroscópica do Espalhamento Inelástico de Luz por Fônons

Seja o campo elétrico da luz incidente mun ponto do espaço dado por:

$$\vec{E}_{j}(\vec{r},t) = \vec{E}_{0}\cos(\vec{k}.\vec{r} - 2\pi\nu t) \tag{3.10}$$

onde \vec{k} correspondem ao vetor de onda da radiação incidente, $\omega = 2\pi\nu$ à respectivas frequências, e $\vec{E_0}$ à amplitude. Ao incidir em um meio material um feixe de luz monocromática, irá induzir uma polarização eléctrica macroscópica \vec{P} no mesmo. Em primeira ordem, essa polarização será diretamente proporcional ao campo elétrico da radiação incidente:

$$\vec{P}(\vec{r},t) = \varepsilon_0 \chi \vec{E}(\vec{r},t) \tag{3.11}$$

Onde χ é a susceptibilidade elétrica do material, um tensor de segunda ordem que descreve a resposta do material ao campo elétrico aplicado, e ε_0 é a permissividade (ou constante dielétrica) no vácuo².

No tratamento clássico, o cristal é representado por um conjunto de átomos sofrendo vibrações harmônicas na presença do campo elétrico da luz incidente [20]. Essas vibrações, atômicas em um semicondutor cristalino são quantizadas em fônons. Considerando o caso de vibrações de rede, temos que o deslocamento atômicos $Q(\vec{rt})$ em terno da sua posição de equilíbrio e ao longo do eixo de vibração em um determinado tempo t pode ser expressados como ondas planas na forma

$$Q_k(\vec{r},t) = Q_{0k}\cos(\vec{q}.\vec{r} - 2\pi\nu_q t)$$
(3.12)

onde \vec{q} corresponde ao vetor de onda do modo de vibração, respectivamente, $\omega_q = 2\pi\nu_q$ à respectivas frequências, e Q_{0k} à respectiva amplitude. Considerando que as frequências características eletrônicas que determinam à χ são muito maiores do que ω_q , portanto, χ pode ser considerada como sendo uma função apenas das coordenadas generalizadas Q_k correspondentes à um determinado modo de vibração k. Isto é conhecido como uma aproximação quase estática ou adiabática ³.

A susceptibilidade é um tensor de segunda ordem, de modo que o momento de dipolo induzido $\vec{P}(\vec{r},t)$, em primeira aproximação pode ser dado pela seguinte relação de grandezas físicas:

$$\begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} = \begin{pmatrix} \chi_{11} & \chi_{12} & \chi_{13} \\ \chi_{21} & \chi_{22} & \chi_{23} \\ \chi_{31} & \chi_{32} & \chi_{33} \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix}$$
(3.13)

Onde os coeficientes χij são as componentes do tensor susceptibilidade. Em geral o tensor suscetibilidade é simétrico isto é: $\chi_{12} = \chi_{21}$, $\chi_{13} = \chi_{31}$ e $\chi_{23} = \chi_{32}$. Considerando que a amplitude das vibrações atômicas seja pequena em comparação com o parâmetro de rede do material⁴ podemos expandir χ em uma série de Taylor dessas

 $^{^{2}}$ Microscopicamente, podemos entender o surgimento dessa polarização como sendo devido à resposta dos elétrons ligados do meio à força elétrica causada pelo campo elétrico da radiação incidente.

 $^{^3{\}rm Ou}$ seja, considerando que a frequência característica dos elétrons seja muito maior que a frequência das vibrações atômicas.

⁴A amplitude das vibrações atômicas depende da temperatura em que se encontra o material. Ao serem quantizadas, essas amplitudes estão relacionadas ao número de fônons presentes no material, à uma determinada temperatura T. Quanto maior T, maior o número de fônons.

coordenadas generalizadas.

$$f(x) = f(x_0) + \left(\frac{\partial f}{\partial x}\right)_{x_0} (x - x_0) + \frac{1}{2!} \left(\frac{\partial^2 f}{\partial x^2}\right)_{x_0} (x - x_0)^2 + \dots$$
(3.14)

A componente ij do tensor susceptibilidade elétrica é dada por:

$$\begin{cases} P_1 = \chi_{11}E_1 + \chi_{12}E_2 + \chi_{13}E_3\\ P_1 = \chi_{21}E_1 + \chi_{22}E_2 + \chi_{23}E_3\\ P_1 = \chi_{31}E_1 + \chi_{32}E_2 + \chi_{33}E_3 \end{cases}$$

Ou seja

$$P_i = \sum_i \chi_{ij} E_j \tag{3.15}$$

Com base aos términos das derivadas da série de Taylor
a χ

$$\left(\frac{\partial\chi_{ij}}{\partial Q_k}\right)_0 = \chi_{ij}^k; \quad \left(\frac{\partial^2\chi_{ij}}{\partial Q_k Q_l}\right)_0 = \chi_{ij}^{kl} \tag{3.16}$$

Corresponde ás derivadas primeiras segundas das componentes da sua susceptividade ás coordenadas generalizadas avaliadas nas posições atômicas de equilíbrio. Assim, a componente ij do tensor susceptibilidade elétrica é dado por:

$$\chi_{ij} = \chi_{ij}^0 + \sum_k \left(\frac{\partial \chi_{ij}}{\partial Q_k}\right)_0 Q_K + \frac{1}{2!} \sum_k \sum_l \left(\frac{\partial^2 \chi_{ij}}{\partial Q_k \partial Q_l}\right)_0 Q_k Q_l + \dots$$
(3.17)

$$\chi_{ij} = \chi_{ij}^0 + \sum_k \chi_{ij}^k Q_K + \frac{1}{2!} \sum_k \sum_l \chi_{ij}^{kl} Q_k Q_l + \dots$$
(3.18)

Onde χ_{ij}^0 é o valor de χ_{ij} na configuração de equilíbrio, $Q_k, Q_l \dots$ são as coordenadas generalizadas associadas aos modos normais de frequência $\nu_k, \nu_l \dots$ e as somatórias são sobre todas as coordenadas generalizadas. O subscrito 0 (zero) se refere à derivada tomada na configuração de equilíbrio. Considerando a expansão 3.17 até o segundo termo, a i-ésima componente do vetor polarização, $P_i = \chi_{ij} E_j$, será então dada por

$$P_{i} = \varepsilon_{0} \chi_{ij}^{0} \vec{E}_{j} \cos(\vec{k}.\vec{r} - \omega t) + \epsilon_{0} \sum_{k} \left(\frac{\partial \chi_{ij}}{\partial Q_{k}}\right)_{0} E_{j} \cos\left(\vec{k} \cdot \vec{r} - \omega t\right) Q_{0k} \cos\left(\vec{q} \cdot \vec{r} - \omega_{q} t\right)$$

$$(3.19)$$

Utilizando a relação trigonométrica $2\cos(a)\cos(b) = \cos(a+b) + \cos(a-b)$, o segundo

termo da equação acima pode ser reescrito como

$$\frac{1}{2}\epsilon_0 \sum_k \left(\frac{\partial \chi_{ij}}{\partial Q_k}\right)_0 E_j Q_{0k} cos \left\{ \cos\left[(\vec{k}+\vec{q}).\vec{r}-(\omega_q+\omega).t\right] + \cos\left[(\vec{k}-\vec{q}).\vec{r}-(\omega-\omega_q).t\right] \right\}$$
(3.20)

A oscilação temporal do vector polarização $\vec{P}(\vec{r},t,Q_n)$ irá causar a reemissão da luz pelo material, dando origem à radiação espalhada. Essa radiação apresenta três componentes distintas de frequência com argumentos da função cosseno. Uma que possui a mesma frequência (ω) que a radiação incidente correspondente ao espalhamento Rayleigh, e duas componentes cujas frequências diferem da frequência da radiação incidente pela frequência de oscilação do modo de vibração responsável pelo espalhamento inelástico, ou seja, a frequência dos fônons. A onda de frequência $\omega_s = \omega - \omega_n$ e vetor de onda $\vec{k}_s = \vec{k} - \vec{q}$ corresponde à componente Stokes do espalhamento, e a onda de frequência $\omega_{AS} = \omega + \omega_q$ e vetor de onda $\vec{k}_{AS} = \vec{k} + \vec{q}$ corresponde à componente anti-Stokes.

3.3 Dispersão Ótica na Matéria

3.3.1 Equações de Maxwell num Material

As constantes ópticas, índice de refração $(n(\omega))$ e coeficiente de extinção $(k(\omega))$, são as que caracterizam a interação da radiação eletromagnética com o material, e são descritas através das partes real e imaginaria da função dielétrica. Estas propriedades ópticas são descritas pelas equações de *Maxwell*. Na forma diferencial e no sistema internacional de unidades (SI), são dadas como:

$$\vec{\nabla} \cdot \vec{D} = 0 \tag{3.21}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \tag{3.22}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{3.23}$$

$$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \tag{3.24}$$

onde \vec{E} e \vec{H} são os vetores dos campos macroscópico elétricos e magnéticos; \vec{J} é a densidade de corrente. As quantidades \vec{D} e \vec{B} são os vetores deslocamento elétrico e indução magnética. Além do mais, a ação dos campos na matéria são caracterizados pelas equações constitutivas que relacionam o vetor campo elétrico E com os vetores

densidade de corrente \vec{J} e vetor deslocamento \vec{D} , bem como o vetor campo magnético \vec{H} , e o vetor indução magnética \vec{B} .

$$\vec{J} = \sigma \vec{E} \tag{3.25}$$

$$\vec{D} = \varepsilon_0 \varepsilon \vec{E} = \varepsilon_0 \vec{E} + \vec{P} \tag{3.26}$$

$$\vec{B} = \mu_0 \mu \vec{H} = \mu_0 \vec{H} + \vec{M}$$
(3.27)

onde μ , μ_0 , ε e ε_0 representam os tensores de permeabilidade magnética e permissividade elétrica local e no vácuo. Quanto a σ , esta representando a condutividade elétrica e $\vec{M} \in \vec{P}$ são os vetores polarização magnética e elétrica.

Combinando a expressão (3.11) com a definição de \vec{D} , obtém-se:

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 \left[1 + \hat{\chi}(\omega) \right] \vec{E} \equiv \varepsilon_0 \hat{\varepsilon}(\omega) \vec{E}$$
(3.28)

em que ε_0 é a permissividade elétrica do vácuo e $\hat{\varepsilon}(\omega)$ um número complexo definido como a função dielétrica.

$$\hat{\varepsilon}(\omega) = 1 + \hat{\chi}(\omega) \tag{3.29}$$

Empregando as considerações anteriores e as equações de Maxwell nas Eq.3.23 e 3.24 obtêm-se as equações de onda para $\vec{E} \in \vec{H}$ (SI)

$$\nabla^2 \vec{E} = \mu_0 \mu \varepsilon_0 \varepsilon \frac{\partial^2 \vec{E}}{\partial t^2} + \mu_0 \mu \sigma \frac{\partial \vec{E}}{\partial t}$$
(3.30)

$$\nabla^2 \vec{H} = \mu_0 \mu \varepsilon_0 \varepsilon \frac{\partial^2 \vec{H}}{\partial t^2} + \mu_0 \mu \sigma \frac{\partial \vec{H}}{\partial t}$$
(3.31)

Para campos ópticos, devemos procurar uma solução senoidal para as equações 3.30 e 3.31

$$E(r,t) = \vec{E}_0 e^{i(\vec{K}\cdot\vec{r}-\omega t)}$$
(3.32)

$$H(r,t) = \vec{H}_0 e^{i(\vec{K} \cdot \vec{r} - \omega t)}$$
(3.33)

Onde \vec{K} é uma contaste de propagação ω é a frequência da luz. As soluções 3.32 e 3.33 satisfarão a equação 3.30 e 3.31, se o vetor de onda \vec{K} fora grandenza complexa. Para este caso temos que a parte real de \vec{K} pode ser identificada como um vetor de onda, enquanto que a parte imaginária de \vec{K} corresponde a atenuação da onda no interior do solido. Substituindo a solução da onda plana (3.32) na equação de onda

(3.30) produz a relação como segue para \vec{K}

$$K^{2} = (\hat{k}\vec{s})^{2} = ((k' + ik'')\vec{s})^{2} = \frac{\varepsilon\mu\omega^{2}}{c^{2}} + \frac{\sigma\mu i\omega}{c^{2}\varepsilon_{0}}$$
(3.34)

Onde K é o modulo do vetor de onda, \vec{s} é o vetor que determina a direção de propagação em relação aos eixos do material e c é a velocidade de propagação da radiação eletromagnética no vácuo. Se não houver perdas (ou atenuação $\sigma = 0$), K seria igual

$$k' = \frac{\omega}{c} \sqrt{\varepsilon \mu} \tag{3.35}$$

e seria real, mas uma vez que o meio absorve a radiação eletromagnética, existem perdas ($\sigma \neq 0$) e escrevemos a Equação 3.34 como

$$\hat{k} = \frac{\omega}{c} \sqrt{\hat{\varepsilon}(\omega)\mu} \tag{3.36}$$

Onde para os materiais não-magnéticos, podemos tomar $\mu = 1$. Agora definimos a função dielétrica complexa dependente da frequência da radiação incidente $\hat{\varepsilon}(\omega, \hat{k})$ como

$$\hat{\varepsilon}(\omega, \hat{k}) = \varepsilon + \frac{i\sigma}{\varepsilon_0 \omega} = \varepsilon_r + i\varepsilon_i \tag{3.37}$$

Onde para a região do infravermelho, os efeitos da dispersão espacial $\hat{\varepsilon}(\omega, \hat{k})$, serão negligenciados ($\hat{\varepsilon}(\omega, 0) = \hat{\varepsilon}(\omega)$). Agora da definição 3.37 temos

$$\hat{\varepsilon}(\omega) = \frac{i}{\varepsilon_0 \omega} \left[\sigma + \frac{\varepsilon \varepsilon_0 \omega}{i} \right] = \frac{i}{\varepsilon_0 \omega} \hat{\sigma}$$
(3.38)

Agora como $\hat{\varepsilon}(\omega)$ é complexo, pode-se definir o índice de refração complexo:

$$\hat{n}(\omega) = \sqrt{\hat{\varepsilon}(\omega)\mu} \tag{3.39}$$

em que

$$\hat{k} = \frac{\omega}{c}\hat{n}(\omega) = \frac{\omega}{c}\left(n(\omega) + ik(\omega)\right)$$
(3.40)

e $\hat{n}(\omega)$ é geralmente escrito em termos de suas partes reais e imaginárias

$$\hat{n}(\omega) = n(\omega) + ik(\omega) \tag{3.41}$$

onde as quantidades $n(\omega) \in k(\omega)$ são chamadas constantes ópticas do sólido, onde $n(\omega)$ é a parte real do índice de refração e $k(\omega)$ é o coeficiente de extinção. O coeficiente de extinção $k(\omega)$ desaparece para materiais sem perdas. Com esta definição para $\hat{n}(\omega)$, podemos relacionar

$$\hat{\varepsilon}(\omega, \hat{k}) = \varepsilon_r + i\varepsilon_i = (n(\omega) + ik(\omega))^2 \tag{3.42}$$

a partir da equação 3.42 obtemos relações importantes como:

$$\varepsilon_r = n^2 - k^2 \tag{3.43}$$

$$\varepsilon_i = 2nk \tag{3.44}$$

substituindo a equação (3.40) na (3.32) obtém-se

$$\vec{E}(\vec{r},t) = \vec{E}_0 e^{-(\frac{\omega}{c}\xi k)} e^{i(\omega t - \frac{\omega}{c}\xi n)}$$
(3.45)

onde $\vec{K} \cdot \vec{r} = |\vec{K}|\xi$ sendo ξ a projeção de \vec{r} na direção de \vec{K} . Da equação (3.45) nota-se que a parte real $(n(\omega))$ do índice de refração complexo, determina a velocidade de fase da onda no meio, enquanto a parte imaginária, $(k(\omega))$, é responsável pela atenuação do campo. Como a intensidade é proporcional a $|E|^2$ (e portanto, a $e^{-2k\xi}$), da lei de Lambert-Beer [45] $I = I_0 e^{-\alpha\xi}$ e a parte imaginaria da equação (3.45) obtém-se

$$\alpha = 2\frac{\omega}{c}k(\omega) \tag{3.46}$$

As medidas feitas no laboratório são medidas de intensidade, mede-se a intensidade da luz que incide, que é transmitida e refletida pela amostra. O coeficiente de absorção permite confrontar os resultados experimentais e teóricos para serem validados. Da Eq. de *Lambert-Beer* obtém-se

$$\alpha(\lambda) = -\frac{1}{d} ln \frac{I}{I_0} \tag{3.47}$$

onde ξ será denominado de d, a espessura do filme. Todas essas relações evidenciam que o coeficiente de absorção ($\alpha(\lambda)$), assim como as constantes ópticas $n(\lambda)$, $k(\lambda)$ são escritos como função da parte real e imaginaria da função dielétrica. Por questões práticas, é conveniente inverter as equações (3.43) e (3.44)

$$n = \sqrt{\frac{1}{2} \left[\sqrt{\varepsilon_r^2 + \varepsilon_i^2} + \varepsilon_r \right]}$$
(3.48)

$$k = \sqrt{\frac{1}{2} \left[\sqrt{\varepsilon_r^2 + \varepsilon_i^2} - \varepsilon_r \right]}$$
(3.49)
3.3.2 Modelo de Drude-Lorentz de Função Dielétrica.

A fim de obtere-se os valores teóricos efetivos de $n(\lambda)$ e $k(\lambda)$, torna-se necessário estabelecer um modelo teórico para a função dielétrica. O modelo de *Drude-Lorentz* para a função dielétrica é um modelo microscópico clássico para a resposta linear do meio aos campos oscilantes. A suposição básica deste modelo é que, sob a ação de um campo oscilantes, os elétrons e íons (as cargas no meio) respondem como osciladores harmônicos lineares. A equação de movimento de uma partícula de carga q e massa m, que tem sua posição representada por $\vec{r}(t)$ medidas em relação à posição de equilíbrio é, segundo este modelo [46]

$$\frac{d^2\vec{r}}{dt^2} + \gamma \frac{d\vec{r}}{dt} + \omega_0^2 \vec{r} = \frac{q}{m} \vec{E}_m \tag{3.50}$$

onde \vec{r} é o vetor deslocamento do oscilador em relação oa equilíbrio, ω_0 é a frequência natural do oscilador não amortecido e está relacionado como a força restauradora do sistema, oriundo de interações coulombianas, γ é a constante de amortecimento e \vec{E}_m é o campo local que atua na partícula.

A equação de movimento (3.50) vale tanto para cargas ligadas quanto para cargas livres. A integração da equação (3.50) leva a expressão do deslocamento

$$\vec{r} = -\frac{q/m}{\omega_0^2 - \omega^2 - i\gamma\omega}\vec{E}_m \tag{3.51}$$

onde $\omega_0 = \sqrt{\beta/m}$ é a frequência angular de ressonância do dipolo. Quando um desses osciladores é exposto a um campo eletromagnético \vec{E} , este fica polarizado, e numa aproximação linear, a polarização elétrica é proporcional ao campo elétrico aplicado equação (3.11). A conexão entre esse descolamento microscópico das partículas carregadas e a resposta macroscópica do meio é obtida pelo cálculo da densidade de polarização $\vec{P} = Nq\vec{r}$, e a equação acima se torna

$$\vec{P} = \frac{Nq^2/m}{\omega_0^2 - \omega^2 - i\gamma\omega}\vec{E}_m \tag{3.52}$$

onde N é o número de cargas por unidade de volume. Portanto, combinando a Eq.(3.29) e (3.52)e supondo que $\vec{E}_m = \vec{E}$ encontra-se:

$$\hat{\chi}(\omega) = \frac{Nq^2}{m\varepsilon_0} \left(\frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega}\right)$$
(3.53)

onde

$$\omega_p = \sqrt{\frac{Nq^2}{m\varepsilon_0}} \tag{3.54}$$

é a frequência de plasma, a qual descreve tanto as vibrações da rede, quanto as oscilações dos elétrons. Portanto combinando a Equação (3.29) com (3.53) encontrase a relação entre a função dielétrica e a suscetibilidade:

$$\hat{\varepsilon}(\omega) = 1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2 - i\gamma\omega}$$
(3.55)

Se cada oscilador responde de forma diferente ao campo aplicado, é possível generalizar a equação (3.55)

$$\hat{\varepsilon}(\omega) = 1 + \sum_{i}^{N} \frac{\omega_{p,i}^2}{\omega_{0,i}^2 - \omega_i^2 - i\gamma_i\omega_i}$$
(3.56)

Multiplicando esta equação por seu conjugado complexo, podemos expressar a constante dielétrica $\hat{\varepsilon}$ em termos da parte real e imaginaria

$$\varepsilon(\omega)_r = 1 + \frac{\omega_p^2(\omega_0^2 - \omega^2)}{(\omega_0^2 - \omega^2)^2 - (\gamma\omega)^2}; \varepsilon(\omega)_i = \frac{\omega_p^2(\gamma\omega)}{(\omega_0^2 - \omega^2)^2 - (\gamma\omega)^2},$$
(3.57)

A partir deste resultado, podemos determinar o índice de refração (n) e o coeficiente de extinção (k)) em função da frequência a partir de $\varepsilon(\omega)$.

Para realizar a análise e modelagem das propriedades óptica (função dielétrica) de filme de In_2Se_3 , será utilizado um programa desenvolvido por pesquisadores do Instituto de Física da UFBA. O programa foi desenvolvido baseando-se no modelo de $Drude^5$ -Lorentz⁶ para a função dielétrica de filmes finos de IS, FTO e CIS, de acordo com as equações (3.57). O procedimento consiste em ajustar os parâmetros da banda de valência e da banda de condução, como números de elétrons das bandas de valência e condução, frequência de ressonância, taxa de relaxação e espessura do filme, comparando espectros teóricos e experimentais $R(\lambda)$ e $T(\lambda)$ [55]. O programa calcula as constantes ópticas a partir dos dados obtidos diretamente na espectroscopia de reflexão e transmissão.

Aqui, o objeto de estudo é composto por um filme fino de In_2Se_3 depositado sobre um substrato de vibro recoberto com FTO. Com isso, para escrever os coeficientes globais de transmissão e reflexão para o conjunto filme-substrato, deve-se levar em conta a existência de quatro interfaces distintas (1) ar-amostra; (2) amostra-FTO; (3)

⁵O modelo de Drude para a banda de condução (elétrons livres)

⁶Modelo de *Lorentz* para a banda de valência (elétrons localizados)

FTO- vidro; (4) vidro-ar. Além disso, como a dimensão da espessura das camadas (IS, FTO) é da ordem do comprimento de onda (micrômetros, nanômetros), também deverá ser levado em conta os efeitos de interferência, tanto para a transmissão, quanto para a reflexão dentro da amostra. Os coeficientes de *Fresnel* podem ser escritos para o caso das múltiplas reflexões e transmissões, em que cada reflexão, ou transmissão, será somada levando-se em conta a sua defasagem que depende da espessura do filme e o índice de refração do meio específico. O coeficiente global de fresnel foi calculado tomando-se o índice de refração do ar $(n_1 = 1)$, os índices de refração complexos n_2 e n_3 do FTO e IS de acordo com a função dielétrica da equação (3.57) e o índice de refração do vidro $(n_4 = 1, 5)$.

CAPÍTULO 4______ PROCEDIMENTO EXPERIMENTAL

4.1 Preparação da Amostra

As técnicas empregadas nesta dissertação tanto de preparo das amostras quanto de sua caracterização física são conhecidas. Nesta secção serão apresentadas de forma resumidas para evitar o excesso de informação. O processo de preparação dos filmes finos de In_2Se_3 , envolveu dois estágios. O primeiro, foi a elaboração de camadas metálicas dos precursores por electrodeposição, enquanto a segunda envolveu o processo de recozimento.

4.1.1 Substrato

O substrato consiste em uma placa de vidro na qual é depositada uma camada de Dióxido de estanho dopado com flúor (*FTO*). O vidro é um material que possui características únicas, tanto por sua constituição natural quanto por seus variados processos de fabricação. Por ser um sólido parecido com um líquido, cada alteração aplicada às gotas de vidro podem gerar novos materiais.

A adição de outras substâncias ao vidro altera as propriedades originais da substância, resultando em variações pensadas para atender necessidades diferentes. Por exemplo a união entre os materiais que compõem o vidro $(SiO_2, Na_2O \in Al_2O_3)$, e o boro produz um material bem interessante, conhecido como vidro borossilicato. O vidro borossilicato possui um coeficiente de dilatação $(3, 2 \times 10^{-6})$ menor que o do vidro comum $(8, 6 \times 10^{-6})$, e, por isso, é menos sensivel às variações de temperatura. Sua temperatura de fusão também é mais alta $(821^{0}C)$, fazendo dele menos vulnerável ao aquecimento. Essas características garantem mais resistência ao material, fazendo com que ele seja perfeito na fabricação de janelas seletivas em paneis solares. O dióxido de estanho dopado com flúor $(SnO_2 : F \text{ ou FTO})$ foi escolhido como o condutor transparente. Essa escolha se deu por conta de suas propriedades ópticas e elétricas, tanto no visível quanto no infravermelho. A alta transmitância no visível devido ao gap de energia em torno de 3, 5 a 4, 2eV, alta refletividade no infravermelho devido a interação de fótons com elétrons na banda de condução, são características importantíssimas do dióxido de estanho que foram levados em conta para ser usado. Para maiores detalhes dirija-se à referência [47]

4.1.2 Limpeza dos substratos

Antes do processo de eletrodeposição, os substratos utilizados para a deposição dos filmes finos foram limpos em banhos numa cuba de ultrassom. A limpeza do substrato é necessária para eliminar possíveis impureza presentes na superfície (pó, impressões digitais, gorduras, etc). O processo de limpeza ocorre em três etapas. Primeiramente os substratos são colocados em banho de ultrassom em acetona por 3 minutos; em seguida troca-se o acetona por água destilada e novamente colocase em ultrassom por 1mn 30s. Depois desse procedimento, o substrato é secado a temperatura ambiente e está pronto para ser usado.

4.1.3 Eletrodeposição

Em sua forma mais simples, o banho de eletrodeposição consiste de uma solução eletrolítica que contém os íons metálicos a serem depositados. Para isso são necessários pelo menos dois elétrodos, ânodo e cátodo, enquanto um terceiro elétrodo (referência) geralmente é utilizado para medir o potencial no qual a eletrodeposição é efetuada. A Fig.4.1, por exemplo, apresenta um esquema básico e ilustração do banho de electrodeposição no regime catódico, no qual os íons se movimentam em direção ao cátodo.

Figura 4.1: (a) Esquema básico de uma célula de eletrodeposição. O ânodo representa o eletrodo auxiliar e o cátodo refiere-se ao eletrodo de trabalho. Em (b) Imagem da célula eletroquímica usada para o processo de electrodeposição de filmes finos. À direita o electrodo (vermelho) de trabalho de carbono vítrio utilizado para a voltometria cíclica, ao meio eletrodo de referência Ag/AgCl, e à esquerda eletrodo (preto) auxiliar ou contra eletrodo.

O elétrodo de referência é denominado dessa forma devido o potencial ser medido na Dupla Redox¹ contendo o eletrodo de referência utilizado. O campo elétrico aplicado entre ânodo e cátodo proporciona a força motriz para os íons. Essa diferença de potencial (ddp) propiciará a transferência de cargas de espécie eletroativas na solução eletrolítica para um dos eletrodos onde se quer realizar o depósito (eletrodo de trabalho). Reações eletroquímicas onde ocorre a formação de depósito pode ser reações redutoras $(O+ne^- \rightsquigarrow R)$ ou reações oxidantes $(A+B \rightsquigarrow C+ne^-)$. Durante as reações redutoras ocorre a transferência de elétrons do eletrodo para o eletrólito (deposição catódica) e durante reações oxidantes ocorre a transferência de elétrons do eletrólito para o elétrodo (deposição anódica). A eletrodeposição catódica foi utilizada porque a maior parte dos íons metálicos são positivos, além disso a eletrodeposição anódica produz filmes de baixa aderência e estequiometria.

Neste trabalho para obter informação relativa aos processos redox das espécies presentes na solução contendo os íons a serem depositados no filme usou-se a voltametria cíclica. A voltamétria é uma técnica electroanalítica que consiste na obtenção de informação do analito² por meio da eletrólise do mesmo na superfície de um eletrodo de maneira que não há desgaste da amostra. Na Fig 4.2 pode ser observadas

 $^{{}^{1}}$ É um termo antigo. Para uma reação Redox, a combinação das espécies oxidantes e redutoras são chamados "*Dupla Redox*". Mas também é utilizado para nomear a combinação de um ânodo e um cátodo, em particular para as células de corrosão.

²substância presente numa amostra e cuja concentração se pretende determinar.

ondas ou sinais anódicas, aqueles associados a oxidações das espécies eletroativas, e/ou catódicas, aqueles associados a reduções das espécies eletroativas.

Figura 4.2: A figura ilustra um voltograma em que estão indicadas ondas anódicas (a1, a2, a3) e catódicas (c1, c2, c3). Figura retirada da referencia [47]

As medidas de voltametria cíclica (VC) e eletrodeposição, em que se produziu uma eletrólise em potencial controlado foram realizadas com o uso de um potenciostatogalvanostato AUT85211 do LabMat. A célula eletroquímica consistuído de três eletrodos. O electrodo de trabalho utilizado para a voltametria ciclica (VC) foi de carbono vítreo de área $0,082cm^2$. Para a eletrodeposição dos filmes de IS usou-se eletrólise em potencial controlado. Neste caso, utilizou-se como eletrodo de trabalho o FTO (Fluorine tin oxide) ($SnO_2 : F$) de área de deposição de 1,40 cm^2 . Como eletrodo auxiliar usou-se fio de platina e como eletrodo de referência Ag/AgCl.

O potencial de eletrodeposição do filme IS foi escolhido com base nos potenciais de redução apresentados no voltamograma cíclico da Fig 4.3. Estes foram feitos numa célula contendo solução aquosa de mistura ternária à temperatura ambiente preparada a partir da dissolução dos compostos $In_2(SO_4)_3$ e SeO_2 e de eletrólito de suporte o tetrafluoroborato de sódio $(NaBF_4)$. No processo de crescimento das amostras se utilizaram volumes iguais de solução SeO_2 , $In_2(SO_4)_3$ e $NaBF_4$ a concentrações de 6, 89mM, 3, 6mM e 0, 1mM respectivamente.

Figura 4.3: Voltametria da solução com uma mistura de $In_2(SeO_4)_3$ e SeO_2 en $NaBF_4$ com eletrodo de carbono vítreo. Curva em vermelho representa o voltamograma da solução antes do depósito, e a curva em azul, após do depósito, a um potencial de -1, 0 V.

O gráfico apresenta três picos de redução, o primeiro localizado em -0,93V, o segundo em -1,25 V e o terceiro em -1,45 V. A solução suporte apresenta um potencial de redução localizado em -1,5 V em relação ao eletrodo de SnO_2 : F [47]. Tais observações, leva a inferir que o potencial de depósito deve estar na faixa de -0,93 a -1,5 V. Por isso se deve tomar cuidado com o potencial mais negativo na deposição do IS. Em nosso caso o potencial de depósito foi de -1.00V vs Ag/AgCl.

A eletrodeposição de metais pode se dar através de várias técnicas, galvanostática, potenciostática, eletrodeposição espontânea (eletrólise) e deposição pulsada. Na eletrodeposição galvanostática, a corrente que flui através da célula é mantida constante durante a deposição. No caso da potenciostática, a tensão é mantida constante durante o processo. Na eletrodeposição espontânea não é necessário uma corrente ou tensão, a reação ocorre espontaneamente. Finalmente, na deposição pulsada o potencial ou corrente é alternada rapidamente entre dois valores diferentes, resultante de uma série de pulsos de igual amplitude, polaridade e duração. A forma dos pulsos tanto para a técnica potenciostática como pulsada são apresentados na Fig.4.4.

Figura 4.4: Diagrama do pulso característico aplicado para eletrodeposição continua ou potenciostática e pulsada.

Nesta dissertação o tipo de pulso utilizado para a electrodeposição potenciostática esta representado na figura Fig.(4.4a), e o pulso utilizado para a electrodeposição pulsada na Fig.(4.4b). Este ultimo, mostra que cada pulso é formado por um tempo ON (T Ligado) durante o qual é aplicado um potencial, e um tempo OFF (T Desligado) durante o qual o potencial é zero. Ao contrário da eletrodeposição contínua, onde apenas duas variável (corrente ou tensão e tempo total) pode ser modificada. Na eletrodeposição pulsada, pelo menos quatro parâmetros podem ser controlados (corrente ou tensão , tempo total, ciclo e período) [48]. O ciclo de trabalho é definido como segue

$$t_{\theta}(\%) = \frac{t_{ON}}{(t_{ON} + t_{OFF})} \times 100$$
(4.1)

Comparando-se o perfil dos voltamogramas da Fig 4.3 com os sinais associadas à oxidações e reduções das espécies eletroativas, Fig 4.2, pode-se afirmar que a deposição dos filmes de IS, foram feitos a partir de electrodeposição catódica, além disso se depositaram amostras com deposição pulsada aplicando um ciclos de trabalho de 66% o seja $t_{ON} = 2s$ e $t_{OFF} = 1s$. Os resultados não foram os esperados; mas fica como perspectiva para futuras pesquisas testar com mais ciclos de trabalho. Para esta ultima técnica, os resultados são tratados de forma menos rigorosa em comparação com os obtidos para electrodeposição contínua.

Cálculo da Espessura do Filme Electrodepositada

Uma estimativa da espessura dos filmes electrodepositados pode ser obtidas por uma equação com base na Lei de Faraday [10], através da determinação da carga que passa através do eléctrodo. A espessura da película é obtido a partir da Equação 4.2

$$e = \frac{1}{F.n.A} \left(\frac{Q.M_{IS}}{\rho_{IS}} \right) \tag{4.2}$$

Onde Q é a carga depositada, M_{IS} é massa molar do IS, F é a constante de Faraday, n é o número total de elétrons que participam do processo de eletrodeposição, A é a área do eletrodo imerso e ρ_{IS} é a densidade volumétrica do IS.

Na eletro deposição do In_2Se_3 o número de elétrons transferidos é 18 de a cordo com a reação da Equação 4.3

$$2In^{3+} + 3(SeO_3)^{2-} + 18H^+ 18e^- \longrightarrow In_2Se_3 + 9H_2O_..$$
(4.3)

Os valores utilizados de peso molecular e densidade do In_2Se_3 são 466, 48 g mol^{-1} e 5, 74 g cm^{-3} respectivamente [49].

4.1.4 Parâmetros de Deposição do IS

Foram depositados filmes de In_2Se_3 sobre substrato de vidro previamente recoberto com FTO pela técnica de pirólise de spray. A deposição foi realizada à temperatura ambiente através do processo de electrodeposição em célula de três electrodos tratados na seção 4.1.3. Uma série de doze amostras, foram fabricadas sob diversas condições de concentração e deposição. Cada amostra é identificada pelo número sequencial de deposição. A quantidade de amostras finalmente analisadas variou em função dos resultados encontrados principalmente por EDS. Como já foi dito na seção 4.1.3, as concentrações na solução eletrolítica, adotadas neste trabalho foram de 6,89mM de SeO_2 e 3,6mM de $In_2(SO_4)_3$. Além disso, no processo de crescimento das amostras, volumes diferentes das soluções foram utilizadas provocando mudanças na concentração final da mistura. Estes volumes correspondem as proporções de 15:15ml e 20:10ml seguindo a sequência acima citada dos solutos. A molaridade da solução $SeO_2 \in In_2(SO_4)_3$ na mistura final, tem valores equivalentes a: 3,45mM(15ml), 1,80mM(15ml) = 4,60mM(20ml) = 1,20mM(10ml), respectivamente. A escolha das concentrações na solução seguiu uma variação em torno de um valor estudado e utilizado por da Silva[47] na electrodeposição do CIS. A quantidade de carga consumida na deposição de cada filme foi determinada pela quantidade de matéria necessária para se alcançar a espessura desejada. Esta espessura é calculada através da Eq 4.2. A área de deposição no substrato é um fator importante na determinação da espessura.

As Tabelas 4.1 e 4.2 mostram os conjuntos de amostras fabricadas de acordo com os diferentes parâmetros acima citados. Na Tabela 4.1 está representado os parâmetros de electrodeposição de filmes finos de IS utilizando potencial contínuo. Na tabela 4.2 são aplicados pulsos de tensão com o propósito de proporcionar uma melhora significativa na qualidades do depósito obtido [50]. Porém, os resultados não foram os esperados, devido o ciclo de trabalho de 66% aplicado, que não permite tempo suficiente para que a concentração de íons metálicos na camada de difusão construir-se novamente por difusão dos íons do volume da solução para a superfície do eletrodo. O trabalho feito por M. Balasubramanian (2012) [50] depositou-se filmes finos de IS sobre FTO a partir de eletrodeposição pulsada aplicando ciclos de trabalho de 6, 9, 15, 33 e 50%. Ele comenta que, estudos de *EDS* confirmam uma razão atômica de aproximadamente 2 : 3 en todos os casos. Mas para os filmes depositados em ciclos de trabalho mais baixo, houve um ligeiro excesso de Selênio.

Tabela 4.1: Parâmetros de deposição de filmes finos IS por electrodeposição com potencial contínuo.

Cod	Carga (C)	Tempo (min)	Área $(cm)^2$	Potencial de deposição	Espessura (nm)	Composição
				com respeito a Ag/AgCl		$SeO_2 \& In_2(So_4)_3$
7A	0,38	19	$1,4{\pm}0,08$	-1,00	180	3,45 mM & 1,80 mM
1A	1,5	25	$1,4{\pm}0,08$	-1,00	501	3,45 mM & 1,80 mM
2A	2,5	27	$1,4{\pm}0,08$	-1,00	731	3,45 mM & 1,80 mM
6A	2,8	49	$1,4{\pm}0,08$	-1,00	974	4,60mM & 1,20mM

Tabela 4.2: Parâmetros de deposição de IS por electrodeposição com potencial pulsado.

Cod	Carga (C)	Tempo (min)	Area $(cm)^2$	Potencial de deposição	$t_{\theta}(\%)$	Espessura (nm)	Composição
				com respeito a Ag/AgCl	-	$SeO_2, In_2(So_4)_3$	
4A	1,37	30	$1,4{\pm}0,08$	-1,00	66	467	3,45 mM & 1,80 mM
5A	2,5	31	$1,4{\pm}0,08$	-1,00	66	778	$3,45 {\rm mM} \& 1,80 {\rm mM}$

Da série das doze amostras depositadas, seis delas mostraram resultados mais promissores a partir das caracterizações de composição até então feitas por *Espec*troscopia de Dispersão de Raio-X (EDX), Difração de Raio-X (DRX), Microscopia Óptica e Microscopia Electrônica de Varredura (MEV). Essas mesmas amostras foram àquelas resultantes do uso das concentrações relativas de 3,45mM (SeO₂) e 1,80mM ($In_2(SO_4)_3$). Já as amostras depositadas a partir das concentrações de 4,60mM (SeO₂) e 1,20mM ($In_2(SO_4)_3$) relativas à mistura na célula eletroquímica, mostraram uma deficiência de índio, em todas as amostras depositas, afastando-se da estequiometria desejada (In_2Se_3). Além disso a pouca aderência ao substrato bem como a irregularidade na distribuição superficial são fatores que levaram ao descarte dessas outras amostras.

4.2 Recozimento das Amostras

A deposição dos filmes de IS neste trabalho foi realizado à temperatura ambiente. Usualmente as amostras são amorfos ou apresentam estrutura cristalina pobre [21], além de apresentarem pequenos grãos em seu estado depositado . Portanto, um tratamento térmico é necessário para melhorar a cristalinidade dos filmes de IS [51]. O recozimento das amostras foi realizado num forno que atinge temperaturas de $1.000^{\circ}C$. O sistema de programação é feito a partir de um controlador microprocessador série TH90DP, que é um instrumento desenvolvido com tecnologia e qualidade para proporcionar versatilidade e precisão no controle de processos de temperatura que permite fazer seguimentos programáveis para execução de rampas e patamares. Em nosso caso foram programadas rampas de aquecimento até se alcançar a temperatura desejada, permanecendo nesta por cerca de 30 a 35 minutos Fig 4.5.

Figura 4.5: Seguimientos de rampas e patamares para o recozimento das amostras IS. Taxa de crescimento da temperatura de $5^{0}C/min$.

As amostras foram posicionadas horizontalmente num reator de quartzo (Fig.

4.6), submetido a uma temperatura final adotada nos patamares de 200, 300 e $400^{\circ}C$ como é visto na Fig.4.5, permanecendo neste durante 30 minutos, sob um fluxo de nitrogênio entre 20 e 25 ml/min. Na programação dos seguimentos (Fig.4.6) todas as

Figura 4.6: Reator de quartzo utilizado para o recozimento de amostras de IS. Figura retirada da referência [47].

rampas apresentaram as mesmas taxas de crescimentos de cerca de $5^{0}C/min$. Terminando o tempo de recozimento o filme é resfriado lentamente e analisado visualmente para detectar a existência de quaisquer danos a superfície como arranhões, furos e outros não-uniformidades presentes devido à manipulação. Amostras uniformes foram selecionadas para serem analisadas através de *EDX*, *DRX*, *Raman*, *Espectroscopia Óptica* e *MEV*. As amostras a $200^{0}C$ apresentaram um cor vermelha profundo, e filmes a temperatura mais elevada eram amarelo dourado.

4.3 Técnicas de Caracterização

4.3.1 Espectroscopia de Dispersão de Energias

Conhecida também como EDX, ou (EDS), a Espectroscopia de Dispersão Raio-X permite avaliar qualitativamente e quantitativamente a composição química do matérial em áreas muito pequenas da ordem de micrômetros. Nesta técnica, as informações, qualitativas e quantitativas, sobre os elementos presentes são obtidas pela captação de raios-X característicos resultantes da interação do feixe eletrônico primário com a amostra. Quando o feixe de elétrons incide sobre a amostra, ele provoca a ejeção de elétrons de camadas mais internas dos átomos, cuja energia de ligação é da ordem dos keV. Com esse escape de elétrons, as camadas das quais os elétrons foram ejetados são ocupadas por outros elétrons de camadas mais externas. Processo este que demanda a liberação de energia correspondente à transição entre camadas, a qual é emitida em comprimentos de ondas no espectro de raios-X (ver figura 4.7). Os comprimentos de onda da radiação eletromagnética emitida são bem característicos de cada elemento químico, o qual permite estudar a composição química da amostra com base nas energias dos feixes de raios X emitidos pela amostra.

Figura 4.7: Gráfico ilustrativo da geração de raios X envolvido na espectroscopia de EDS. Um elétron da camada K é arrancado mediante energia cedida pelo elétron do feixe primario. Outro elétron da camada L decai emitindo radiação X com energia correspondente à diferença de energia entre as camadas L e K

Os fótons emitidos são detectados por um semicondutor que logo depois converte em contagem eletrônica por um analisador multicanal. Montado os espectros segundo os valores de sua energia, serão comparados com os espectros padrão dos elemento permitiendo assim a determinação da concentração dos elementos químicos que compõem a amostra.

4.3.2 Difração de raios X

A principal aplicação da difração de raios X refere-se à identificação de estruturas cristalinas, medição de tensão e a determinação do valor de parâmetros de rede. Finalmente, a intensidade dos picos de difração dependem, para uma dada estrutura (cúbica hexagonal, etc) do plano de difração e da fração em volume dos grãos capazes de difratar (textura cristalográfica). Os planos de difração e suas respectivas distâncias interplanares, bem como as densidades eletrônicas ao longo de cada plano cristalino, são características específicas e únicas de cada estrutura cristalina, da mesma forma que o padrão difratométrico por ela gerado.

Figura 4.8: Representação esquemática da difração de raios X por átomos de uma rede periódica.

O fenômeno de difração é devido à existência de determinadas relações de fase entre ondas refletidas pelo cristal. Dois raios estarão completamente em fase, quando o comprimento dos seus caminhos diferem por un número inteiro de comprimento de onda. O feixe de raios-X incide sobre um cristal cujos planos geram planos refratados (vira Fig4.8). Se λ é o comprimento de onda dos raios-X e o feixe incidente tem um ângulo θ , então gera-se uma transferência construtiva dos feixes difratados pelos planos, quando se cumpre a lei de Bragg.

$$2dsen\theta = n\lambda \tag{4.4}$$

Onde *d* representa a distância entre planos cristalinos determinados pelos índices de Miller (*hkl*) da família de planos, o ângulo 2θ é conhecido como ângulo de difração e está formado pelo feixe incidente e o difractado, *n* é um número inteiro que define a ordem de difração atômica [52], e λ é o comprimento de onda da radiação X utilizada.

Para as medidas de difração de raios X foi utilizado um difratômetro da marca Shimadzu D7000, que trabalha com radiação $K\alpha$ do cobre, com comprimento de onda 1,5418Å. O aparelho pertence ao Laboratório de Raio-X do Instituto de Química da UFBA. O aparelho trabalha sob a geometria de Bragg-Brentano. Nela, o tubo de emissão é fixo, a amostra é girada con ângulo θ e o detector com ângulo 2θ . A geometria utilizada nas medidas foi a $\theta - 2\theta$. O aparelho utilizado é mostrado na figura 4.9.

.38

Figura 4.9: Difractômetro de raios X na geometria $\theta-2\theta$ utilizado para investigação estrutural das amostras

O conjunto de dados foram processados e analisados através de um software X'Pert HighScore Plus na qual utiliza o banco de dados de difração da (ICDD) International Center for Diffraction Data e $(JPDS)^3$. Este software permite plotar o conjunto de dados do difratograma das amostras e fazer comparações com as cartas cristalográficas existentes no Banco de dados. Os parâmetros mais importante das cartas cristalográficas para fins de identificação de um composto cristalino, são as distâncias interplanares e as intensidades normalizadas para os vários planos (hkl) que difratam construtivamente os raios X. Além disso outras informações acompanham essas cartas cristalográficas: sistema cristalino, grupo de simetria, parâmetros de rede, volume e densidade da célula tanto para o IS como para FTO. Ver tabelas 4.3 e 5.5.

Temperatura JCPDS Fase I/I_0 (\mathbf{K}) (hkl) 2θ Ref. ICDD InSe[12, 34]298 (012)25,4071-0250 100 $\alpha - In_2Se_3(\mathbf{R})$ 29818,48 34-0455; 01-072-1470 (006)10035 $\alpha - In_2Se_3(\mathbf{H})$ 298(004)100 $18,\!431$ [34, 35]34-1279; 00-034-1279 478 $-In_2Se_3(\mathbf{R})$ (006)100 27,124 [15, 34, 35]23-294; 40-1408; $-In_2Se_3(\mathrm{H})$ 803 (006)10027,65[3]40-1407

Tabela 4.3: Parâmetros cristalográficos para o IS

³Joint Committe on Diffraction Standards

4.3.3 Espectroscopia Raman

Para a realização das medidas de espalhamento Raman utilizou-se dois espectrômetros: um de marca *Bruker* modelo RFS/100 que está localizado no Centro de Tecnologia Estratégica do Nordeste *CETENE*. Este sistema utiliza um laser de *Nd*: *YAG* emitiendo, com um comprimento de onda em 1064nm.

Também o espectrômetro de marca, NRS - 5100 da Jasco com detecção do tipo CCD (*Charge Coupled Device*) DU 420-OE do LAMUME UFBA, refrigerado a nitrogênio líquido, onde, as medidas foram obtidas em geometria de retroespalhamento. Para excitação das amostras este sistema utiliza um laser de argônio operado com a linha 532, 13nm.

Figura 4.10: (a) Ilustração do aparato experimental empregado nas medidas de espalhamento Raman. Em (b) espectrômetro NRS – 5100 da Jasco com detecção do tipo CCD (Charge Coupled Device) refrigerado a nitrogênio líquido. O aparelho pertence a LAMUME da UFBA.

Como parâmetros para a aquisição selecionou-se a região de $98-1000cm^{-1}$ e foram feitas aquisições utilizando 20 acumulações com 2 segundos de exposições para cada uma. A potência utilizada foi de 1, 5mW e a resolução de $15, 65cm^{-1}, 2, 04cm^{-1}/pixel$. Nas medidas de espalhamento o feixe do laser foi focalizado utilizando-se um microscópio equipado com três lente objetiva 5x, 20x e 100x . Estas lentes foram utilizadas para focalizar o feixe de laser sobre a superfície da amostra no interior da célula.

O equipamento tem um sistema periféricos óticos com polarizadores, grade de difração e espelhos, entre outros. As leituras da intensidade da luz são realizada em um CCD acoplado a um computador responsável pela aquisição e ormazenamento de dados. Numa outra etapa do trabalho, os dados gravados foram analisados com o auxílio dos *softwares Origin*[®] da OriginLab e Gnuplot. Os espectros foram ajustados por soma de picos, cada um descrito por uma função Gaussianas de onde foram ex-

traídos os dados espectroscópicos mais relevantes como número de onda intensidade e largura de linha das bandas Raman observadas.

4.3.4 Medidas de Transmissão e Reflexão

O sistema utilizado para a realização das medidas de transmissão e reflexão foi um espectrômetro do Laboratório de Fotoacústica IF-UFBA. O equipamento é composto de uma lâmpada de Xenônio de alta pressão de 150 W da *Sciencetech*; um Monocromador *Cornerstone*, modelo 74100 contendo filtros de roda de 5 posições da *Newport*; um chopper 300CD da *Scilec Intruments Optical*; um Amplificador *Lockin* duas fases 3961B da *Ithaco NF*; um sensor PbS e uma fonte de alimentação da lâmpada LPS 256 SM da Sciencetech.

Os espectros das amostras analisadas foram feitos num intervalo de comprimento de onda do espectro eletromagnético, que vai desde 260nm (ultravioleto próximo) até 2200nm na região do infravermelho próximo. As medidas de transmissão foram realizadas colocando a amostra e o sensor alinhados com a saída do monocromador. Ás medidas de reflexão, foram feitas utilizando um espelho plano (coeficiente de reflexão maior que 96% na faixa $0, 48 - 20\mu m$) refletindo num ângulo de aproximadamente 10^{o} em direção ao detector. Para as medidas, o espelho é substituído pelas amostras.

A determinação dos espectros de transmitância $T_A(\lambda)$ e reflectância de uma dada amostra se dá através da razão entre os sinais de transmissão ou reflexão medidos para aquelas amostras pelos sinais de referência para cada modo utilizado (transmissão ou reflexão).

No caso das medidas de transmissão, o sinal de referência é a medida do espectro da fonte $(S_f(\lambda))$. Já no caso das medidas de reflexão, a referência é o sinal oriundo de um espelho, $(S_{f-E}(\lambda))$, colocado na saída do monocromador.

Considerando que o sinal medido pelo detector é um produto de todas as contribuições do sistema (monocromador, detector, etc), fonte e amostra, a transmitância, $T_{Amostra}$, e a reflectância, $R_{Amostra}$, são dados por:

$$T_{Amostra}(\lambda) = \frac{S_f(\lambda).S_{Amostra}(\lambda).S_{Sist,Opt}(\lambda)}{S_f(\lambda).S_{Sist,Opt}(\lambda)}$$
(4.5)

$$R_{Amostra}(\lambda) = \frac{S_f(\lambda).S_{Amostra}(\lambda).S_{Sist,Opt}(\lambda)}{S_f(\lambda).S_{Sist,Opt}(\lambda)}$$
(4.6)

Tendo-se os espectros de transmissão e reflexão é possível determinar em primeira aproximação o coeficiente de absorção do material no substrato utilizado-se a seguinte expressão:

$$\alpha(\lambda) = -\frac{1}{e} ln\left(\frac{1 - R_{Amostra}(\lambda)}{T_f(\lambda)}\right)$$
(4.7)

Onde e é a espessura do material depositado. Onde considera-se a aproximação que $T_{Amostra}(\lambda) \approx T_f(\lambda).e^{-\alpha.e}$ [47].

4.3.5 Microscopia Eletrônica de Varredura

O objetivo da tecnica de Microscópio Eletrônico de Varredura (SEM) é fazer imagens da superfície do material analisado, de maneira a avaliar sua morfologia. Além disso também é possível identificação dos elementos químicos que compõe as amostas através de mapeamento.

As micrografias SEM foram realizadas em um microscópio eletrônico de varredura no Laboratório Multiusuário de Microscopia Eletrônica da UFBA (LAMUME-UFBA). Este equipamento é utilizado na geração de imagens da superfície de uma amostra através do bombardeamento com um feixe de eléctrons acelerados por um potencial acelerador. Este feixe ira interagir com a amostra a partir de duas formas: elástica e inelástica. No espalhamento elástico os elétrons do feixe incidente são desviados pelas colisões com elétrons que ficam nas camadas mais externas dos átomos ou pelas reflexão com o núcleo atômico dos mesmos. Para este caso, os elétrons que são espalhados com um ângulo maior de 90⁰, são chamados retroespalhados. Já no espalhamento inelástico os elétrons do feixe perdem energia produto das interações com átomos da amostra gerando elétrons secundários (SE), elétrons retroespalhados (BSE) e raios X característicos. Os elétrons secundários são coletados por um detector, e a partir disso a imagem da topografia do material estudado é formada [53].

Uma das vantagens desta técnica está na análise simultânea dos sinais recolhidas pelos detectores, o qual permitem caracterizar cada ponto da amostra em termos de [54]: número atômico (BSE), topografia (SE e BSE) propriedades cristalinas (BSE), composição química elemental (BSE), campo magnetíco (BSE), orientação cristalina local da amostra (BSE). Na configuração de um microscópio eletrônico pode-se acoplar as técnicas MEV/EDS permitindo obter mapas de composição dos elementos na superfície da amostra, isto é, proporciona uma imagem semiquantitativa da concentração dos elementos mediante a densidade de pontos de uma cor especifica na área. Assim imagens como os mostrados na Fig.4.11 são obtidas. Formado por um conjunto de pontos brilhantes, onde cada um deles indica a chegada de um fóton do elemento selecionado a medida que é realizado a varredura na área de observação.

Figura 4.11: (a) Analise do mapeo da amostra 1A após o recozimento à $400^{0}C$. A área analisada é aproximada de $4,74 \pm 0,05 \mu m^{2}$. (b) densidade de pontos de uma cor especifica na área.

A Figura 4.11(a) representa a imagem da superfície da amostra 1*A* depois de ser submetida ao tratamento térmico. Observa-se uma escala de cores em que as partes mais escuras representam regiões com elementos de números atômicos menores, em quanto a partes claras são regiões com elementos de números atômicos maiores. Nesse caso o colorido, representam o substrato de vidro (Si, C, O), e a parte mais clara os elementos correspondentes ao Se, In e Sn do depósito. É possível também visualizar uma maior concentração de Selênio em determinadas regiões em forma de nanocristais, indicando que o filme é não uniforme. Isso pode ter ocorrido para os casos em que a concentração de Selênio foram maiores.

CAPÍTULO 5.

RESULTADOS EXPERIMENTAIS

Este capítulo constitui a principal parte do presente trabalho de dissertação, uma vez que nele serão apresentados os resultados e análises das composições e caraterizações estruturais, morfológicas e ópticas das amostras de IS. A aparência geral dos filmes antes e após o seu recozimento, foram analisados primeiro visualmente. Depois foram tirados os resultados das medidas de EDS, os quais indicam a estequiometria das camadas e a porcentagem quantitativa de cada elemento nas diferentes amostras eletrodepositadas. Em seguida mostra-se os estudos das características estruturais por DRX e resultados de medidas de espalhamento Raman, revelando características vibracionais. As propriedades ópticas foram estudadas usando espectro de transmissão e reflexão óptica. A morfologia da superfície dos filmes foi examinada utilizando MEV.

5.1 Análise por EDS das Amostras de IS

A espessura das camadas depositadas no subtrato de vidro é aproximadamente de 360nm para o FTO e de 100 – 974nm para o In_2Se_3 . A análise a partir de EDS pode revelar informação de composição química de superfície com uma profundidade de até 1µm [55]. Este fato faz com que os espectros obtidos revelaram informações tanto das camadas depositadas como também do substrato. Para ilustrar o fato, a Figura 5.1 apresenta os picos caraterísticos de cada elemento químico que pode ser vistos a traves do espectros de EDS.

Figura 5.1: Espectro de EDS da amostra 2A depositada sobre $Vidro/SnO_2$ e recozido.

Conforme esperado para filmes de IS depositados sobre vidro/FTO observa-se no espectro de EDS sinais dos elementos In e Se indicando a presença dos mesmos na amostra. Vê-se também forte presença do sinal de Sn na superfície de análise, além disso uma pequena emissão relacionada ao cloro que é o elemento integrante do precursor do SnO_2 no processo de deposito por spray pilólise [56]. Também observamos a presença de O, Si, Na e Al, que são devidos à composição do vidro. Porém, este espectro faz parte de um conjunto de doze amostras que foram depositadas, no entanto após as analises de *EDS*, seis delas foram descartadas por apresentarem concentração muito afastadas da estequiometria (ou do valor esperado).

As concentrações dos elementos encontrados nas seis amostras restantes são identificadas na Tabela 5.1. Além disso também é apresentada da evolução na concentração dos elementos após o tratamento térmico como foi dito na seção 4.1.4.

Amostra	Recozimento	T^0C		Con	centraçõ	ões Até	ômicas	dos Ele	ementos	(%)		$\sum(\%)$
		·	Ο	Na	Si	Cl	Ca	Se	In	Sn	Al	
$V/SnO_2/7A$	Não		45,11	$1,\!68$	$18,\!32$	$0,\!63$	3,06	6,31	2,26	$22,\!63$	Х	
	Sim	400	$46,\!69$	Х	8,36	$0,\!69$	Х	8,08	$3,\!98$	$32,\!20$	Х	100
$V/SnO_2/1A$	Não		21,74	2,04	$16,\!19$	0,70	$_{3,22}$	26,21	11,02	18,88	Х	
	Sim	400	$19,\!20$	$1,\!25$	5,92	$0,\!66$	Х	30,72	$18,\!55$	$21,\!81$	$1,\!91$	100
$V/SnO_2/2A$	Não		18,84	1,57	4,86	0,56	1,41	$38,\!99$	$19,\!64$	14,14	Х	
	Sim	200	$24,\!6$	$1,\!11$	1,32	$0,\!43$	Х	$38,\!46$	$23,\!65$	8,81	$1,\!52$	100
$V/SnO_2/6A$	Não		$23,\!46$	1,23	8,10	Х	1,96	$37,\!82$	$13,\!62$	18,81	Х	
	Sim	300	23,77	Х	1,74	Х	Х	$43,\!88$	18,70	9,04	$1,\!87$	100
				El	lectrode	posiçã	o Pulsa	ada				
$V/SnO_2/4A$	Não		Х	Х	6,73	$0,\!63$	$2,\!17$	47,48	$23,\!48$	$17,\!67$	1,84	
	Sim	400	Х	Х	$1,\!55$	$0,\!40$	Х	49,74	$31,\!29$	15,72	$1,\!30$	100
$V/SnO_2/5A$	Não		Х	Х	4,74	Х	$1,\!62$	49,70	26,74	$17,\!22$	Х	
	Sim	200	6,77	Х	1,78	Х	Х	$52,\!53$	$27,\!83$	9,47	$1,\!62$	100

Tabela 5.1: Concentrações atômicas dos elementos químicos nas amostras antes e após o recozimento.

Pode-se ver que para todas os casos (independente da técnica de electrodeposição) as concentrações dos elementos In e Se estiveram presentes. Por outro lado nota-se que para as amostras depositadas a partir da técnica de electrodeposição pulsada, elementos característicos ao substrato estiveram ausentes.

Uma forma de confirmar o efeito do recozimento sobre as amostras, é através da comparação de dois espectros de EDS da mesma amostra. Para esta finalidade na Fig.5.2 pode-se observar que as intensidades das linhas de emissão para o In e Se aumentaram quando as amostras foram recozidas sob um fluxo de nitrogênio a temperatura de $400^{\circ}C$, enquanto que houve diminuição das linhas de emissão de O, Na, Si, Sn, Cl, além do desaparecimento definitivo do Ca. O mesmo acontece para as demais amostras com presença ou ausência dos mesmos como pode ser verificado na Tabela 5.1.

Observando os dados apresentados nesta Tabela, vemos que, a evolução das concentrações atômicas com o tratamento térmico mostra apenas uma leve modificação para amostras recozidas a temperaturas de $200^{0}C$ e $300^{0}C$. Mas para temperaturas de $400^{0}C$ as melhoras são significativas. O mesmo acontece com a razão In/Se, com valores esperados de 1,5. Estes resultados apresentados na Tabela 5.2 indicam que houve pouca modificação na composição das amostras. Isto é, indica que o processo de recozimento pode ser melhorado, podendo utilizar, tanto temperaturas, quanto tempos maiores.

Figura 5.2: Espectro de EDS da amostra 1A antes e depois do recozimento em comparação das intensidades de cada linha de emissão. Depositado em vermehlo e após recozido em preto.

Na Tabela 5.2 é apresentado uma análise quantitativa dos porcentuais atômicos do selênio e índio, bem como suas razões. A perspectiva teórica para a estequiometria dos filmes é que estes apresentem porcentagens de 40% de átomos de Índio e 60% de átomos de selênio.

$\operatorname{Cod}(e)$	Recozimento	$T(^{0}C)$	concentr	ações Atômicas (%)	Razão Se/In
			Se	In	
	Η	Electrode	eposição c	om potencial contínuo	
7A(180nm)	Não		73,80	26,20	2,80
	Sim	400	66,10	$32,\!90$	2,01
1A(501nm)	Não		70,29	29,71	2,31
	Sim	400	$62,\!23$	37,77	$1,\!65$
2A(731nm)	Não		$66,\!69$	$33,\!31$	2,01
	Sim	200	60,94	$39,\!05$	1,56
6A(974nm)	Não		73,88	$26,\!12$	2,82
	Sim	300	68,02	$31,\!98$	2,12
		E	lectrodep	osição Pulsada	
4A(467nm)	Não		$66,7\pm$	$33,3\pm$	2,0
	Sim	400	$61,5\pm$	$_{38,5\pm}$	$1,\!60$
5A(778nm)	Não		$65,0\pm$	$35,0\pm$	$1,\!90$
	Sim	200	$64{,}6\pm$	$35,4\pm$	$1,\!82$

Tabela 5.2: Valores das concentrações relativas dos elementos In e Se nas amostras antes e após o recozimento.

As estequiometrias presentes nesta tabela foram feitas variando parâmetros como: carga depositada, tempo de deposição e volumes das soluções. Para amostras depositadas em tempos curtos foi observado um déficit de índio com relação ao selênio. Mas à medida que o tempo aumento a presença de Índio foi mais perceptível, isto é, devido à deposição tardia do Índio relacionada com seu coeficiente de difusão menor do que Selênio. Em vista disso pode-se dizer que à temperatura ambiente a estequiometria das amostras melhoram com a espessura do filme para uma dada concentração e técnica de electrodeposição. Isso pode ser observado nas amostras 7A, 1A, e 2A electrodepositada a partir de potencial contínuo sob as concentração dadas na Tabela 4.1. O mesmo foi encontrado para as amostras 4A e 5A eletrodepositadas a partir de potencial pulsado

Após o tratamento térmico as amostras que mais se aproximaram da estequiometria esperada foram a 1A, 2A, 6A e 4A, apresentando um desvio relativo de 10%, 4%, 15, 3% e 6% em relação à razão Se/In esperada. Em face desse resultado, podemos prosseguir utilizando a notação In_2Se_3 para a estequiometria da amostra em filmes finos depositadas no laboratório LabMat.

5.2 Difração de Raios- X

As propriedade estruturais do seleneto de índio foram estudada usando medidas de DRX realizada sobre amostras preparadas através da variação dos parâmetros de síntese conforme indicado nas tabelas 4.1, 4.2 e 5.19. Os resultados mostram que só a temperatura de recozimento afeta a fase, e consequentemente a estrutura do composto crescido. Como pode ser visto na figura 5.3, a difração de raios-X revelou caráter cristalino para todas as amostras analisadas, com presença de picos estreitos e bem definidos. Observa-se também que os máximos dos picos de difração para todas as amostras estão em posições angulares similares $(2\theta \approx 28, 602^0)$. Ademais, os difratogramas apresentados mostram que os filmes finos de IS crescem com estrutura romboédrica (ICDD card N_0 34-0455) e orientação preferencial ao longo dos planos (009), (104) e (1010) independentemente da espessura. Também apresentam alguns planos de difração da estrutura $\beta - In_2Se_3(R)$ (ICDD 40-1408). Além disso o fato de ter espessuras no range de 501 - 974nm aproximadamente; os espectros de DRX das amostras de IS permitem detectar alguns sinais de difração proveniente do FTO. Este fato traz consigo um grande problema, pois como pode ser visto nas figuras 5.3 e 5.4(c) (resumido na Tabela 5.3) existem picos relacionados aos planos (112) do SnO_2 que se confunde com os picos dos planos (009) e (104) do IS, o qual torna-se difícil na identificação dos picos de difração. A baixa intensidade dos picos pode ser

relacionados com a espessura e a cristalinidade do filme [10].

Figura 5.3: Espectro de difração de raios-X das amostras de IS como depositado.

Os espectros apresentados abaixo mostram os resultados das medidas de difração de raio-X realizadas antes e depois do recozimento das amostras às temperaturas (a) $200^{0}C$, (b) $300^{0}C$ e (c) $400^{0}C$ sob um fluxo de nitrogênio entre 20 e 25 ml/min durante 30 minutos. Os difratogramas da Fig. 5.4 mostram as fases existentes no momento do deposito e o efeito do recozimento sobre estes filmes. O recozimento causa uma amplificação dos picos, tanto no IS quanto naqueles relativos ao SnO_2 além de afinar esses picos.

No espectro de DRX para a filme recozida a $200^{\circ}C$ (Fig.5.4a), picos de difração para os planos (002) e (0012) da fase de Se [15] e β (ICDD card N_0 40-1408) começaram a desenvolver-se. As intensidades deste picos foram melhorando a medida que a temperatura de recozimento foi aumentando (ver Fig.5.4 (c) e (d)). Outros picos pequenos para os planos (106) e (0111) das fase γ (ICDD card N_0 400-1407) e α foram observados nas amostras recozidas a $300^{\circ}C$ e $400^{\circ}C$

Figura 5.4: Espectro de difração de raio-X das amostras IS como depositadas (2) e após do tratamento termico (1). As temperaturas de reozimento foram, (a) $200^{0}C$, (b) $300^{0}C$ e (c) $400^{0}C$.

Os picos associados à fase Se (marcados com #)[15] são atribuímos às estruturas em forma de hastas vistas na imagens do MEV (ver Fig.5.18).

Fazendo um analises com respeito à cristalinidade, pode-se dizer que filmes finos de seleneto de índio recozidas a temperaturas de até $300^{0}C$ apresentam menor cristalinidade. Isto pode ser devido à presença de múltiplas fases de seleneto de índio. A presença da fase mista poderia perturbar a cristalização do In_2Se_3 [59]. Mas os filmes recozidos em $400^{0}C$ exibiram melhores cristalinidades conforme os resultados de DRX. No processo de cristalização, pode haver competição entre os grão de duas fases, conduzindo à perda de cristalinidade [59]. Filmes menos cristalinas formadas em $200^{0}C$ e $300^{0}C$ também pode ser considerado como o estado intermediário de orientações de grãos.

O efeito do recozimento sobre filmes finos de IS eletrodepositadas em FTO foram reportados por Massaccesi et. al [11], Balasubramanian et. al [60], e Ikada et. al [58] entre outros. Por exemplo, Massaccesi et. al fez recozimento à $390^{\circ}C$ sob atmosferas de argônio durante 30 minutos melhorando a cristalinidade da fase β que ele obteve. Balasubramanian et. al fez recozido às temperaturas no range de $450-550^{\circ}C$ sob atmosferas de argônio durante 20 min obtendo fase γ com picos agudos devido à cristalização. Finalmente Ikada et. al fez recozimentos a temperaturas mais elevadas do que $350^{\circ}C$ levando a aparência de picos de difração atribuíveis ao fase $\gamma(H)$.

Para efeito de comparação o gráfico 5.5 apresenta o espectro padrão (ICDD-34-0455), no qual são postos os planos cristalográficos de difração compartilhados com nossa amostras.

Figura 5.5: Padrão de difração de raios-X da carta cristalograficas ICDD-34-0455 para a fase α romboédrico do IS.

	2θ	Valos-d	Identificação			ICSD
Amostra	(graus)	(Å)	da fase	(hkl)	Ref.	ICDD
	$25,\!63$	3,47	Se	(002)	[15]	
	27,91	3,50	$\alpha - In_2 Se_3(R)$	(009)	[35]	34-0455
	$28,\!61$	3,11	SnO_2	(112)		01 - 077 - 226
	$28,\!63$	3,11	$\alpha - In_2 Se_3(H)$	(104)	[34, 35]	34-0455
	31,84	2,81	$\gamma - In_2Se_3(H)$	(106)	[34, 35]	40-1407;
	35,91	2,50	$\beta - In_2Se_3(R)$	(0012)	[15]	40-1408
IS	39,92	2,25	$\alpha - In_2Se_3(R)$	(1010)	[12, 34]	34-0455
	$43,\!47$	2,08	$\alpha - In_2Se_3(R)$	(0111)	[35]	34-0455
	53,71	1,70	SnO_2	(221)		00-029-1484
	$56,\!68$	$1,\!62$	$\beta - In_2Se_3(R)$	(027)	[15, 34, 35]	40-1408;
	63,80	1,46	SnO_2	(2011)		00-029-1484
	67,79	1,38	SnO_2	(132)		00-029-1484

Tabela 5.3: Valores de propriedades dos picos de difração da amostra 4A recozida a $400^{0}C$ determinados a partir do espectro experimental. Referência para as de demais amostras.

5.2.1 DRX da Amostra Depositada com Potencial Pulsado.

A Figura 5.6 mostra padrão de difração de DRX da amostra 4A depositada sob o ciclo de trabalho de 66% e após ser recozida à temperatura de 400^oC. Observa-se que os picos tornam-se pronunciados devido a recristalização, com planos cristalográficos orientados preferencialmente ao longo das direções (009), (104) e (1010) caracterizando a estrutura α -Romboédrica. Além de planos de difração poucos pronunciados das fases β , γ Se e SnO₂. Este padrão de difração apresenta a mesma característica que os padrões de difrações das amostras depositadas com potencial contínuo.

Figura 5.6: Espectro de difração de raios-X das amostras de IS como depositado com potencial pulsado. (1) como depositada e (2) após do recozimento à 400^0C .

5.3 Modos Vibracionais no IS.

As medidas de difração de raios-x mostrou que as amostras IS (In_2Se_3) depositadas à temperatura ambiente e após o tratamento térmico apresentaram estrutura " α -Romboédrica". De acordo com *Popovic S. et. al* [34] este tipo de estrutura contém uma molécula cristalograficamente independentes por célula unitária ($Z^B = 1$). Os vetores primitivos possuem comprimentos a = 4,025(5)Å e c = 28,762Å. No entanto, existem dois possíveis grupos espaciais para esta fase [60]: o R3m com estrutura centrossimétrica ou não-centrossimétrico de grupo espacial R3m como é relatado por *Osamura K. et al* [36]. Os parâmetros acima para as demais fases podem ser visto na Tabela 5.5

Foi utilizado o método de correlação [41] para encontrar os modos Raman (R) e Infravermelho (IR) dos fônons ativos. Para tal fim o sistema cristalino da amostra deve ser conhecida. A informação cristalográfica necessária para o IS é dada na Tabela 5.6. Nesta, o fator (Z) representa o número de moléculas na célula unitária cristalográfica. Dependendo do simbolo que caracteriza o grupo espacial (letra maiúscula), a célula cristalográfica irá ter dois, três ou mais células de Bravais. As representações irredutíveis obtidas a partir destas células cristalográficas irão conter dois, três ou quatro vezes o número de vibrações como sejam necessárias para representar as vibrações da estrutura do cristal [41]. Para simplificar os cálculos é melhor trabalhar com o menor número de célula de Bravais do cristal. Para tal fim, o parâmetro LP (Lattice Points) ou multiplicidade que é a razão entre o volume da célula unitária cristalográfica e o volume equivalente de uma célula primitiva, permite eliminar a inclusão de demasiadas células de Bravais na célula cristalográfica. A tabela 5.4 tirada da ref.[41] dá este valores, LP. Estas reduções foram incluídas na Tabela 5.6.

Tipo	Simbolo	Fator LP
Primitiva-acêntrica	Р	1
Face centrada-A	А	2
Face centrada-B	А	2
Face centrada-C	С	2
Todas as faces centradas	\mathbf{F}	4
Corpo centrado	Ι	2
Romboédrico centrado	R	3

Tabela 5.4: O valor da multiplicidade que reduz o tamanho da célula cristalográfica para o espaço da célula de Bravais desejado

Tabela 5.5: Parâmetros cristalográficos para o IS

Fase	Estrutura	Grupo Espacial	N_0	a(A)	c(A)	$V(A^{\circ})$	\mathbf{Z}	$d(Mg.m^{-3})$	Ref.
InSe(H)	Hexagonal	$P6_3/mmc$	194	4,005(5)	16,640(4)	231,1	4	5,5681	[34]
$InSe(\mathbf{R})$	Romboédrica	R3m	160	4,004(5)	24,960(4)		6	5,57	[34]
$\alpha - In_2Se_3(\mathbf{R})$	Romboédrica	$R\bar{3}m$ ou $R3m$	166 ou 160	4,025(5)	28,762(7)	403,5	3	5,757	[34 - 36]
$\alpha - In_2Se_3(\mathbf{H})$	Hexagonal	$P6_3/mmc$	194	4,025(5)	19,235(5)	269,9	2	5,739	[34, 35]
$\beta - In_2Se_3(\mathbf{R})$	Romboédrica	$ m R\bar{3}m$	166	4,00(8)	28,33(1)	$392,\! 6$	3	5,918	[34, 35]
$\gamma - In_2Se_3(\mathbf{H})$	Hexagonal	$P6_{1}22$	178	7,133(10)	19,58(2)	861,2	6	5,396	[34]
$\delta - In_2Se_3(\mathbf{H})$	Hexagonal	$P\bar{3}m1$	164	4,014(8)	9,64(1)	154,5	1	5,757	[34]

Tabela 5.6: Informação cristalográfica para várias fases do cristal seleneto de índio.

Fases do cristal	Nomenclatura o	la estrutura cristalina ^a	Moléculas por	Puntos	Moléculas por
	Rais-x	Espectroscopia	unidade de célula	da rede	célula de Bravais
			$(\mathbf{Z})^b$	$(LP)^c$	$({ m Z/LP}){=}Z^B$
InSe(H)	$P6_3/mmc$	D_{6h^4}	4	1	4
$InSe(\mathbf{R})$	R3m	$C_{3v^{5}}$	6	3	2
$\alpha - In_2 Se_3(\mathbf{R})$	$R\bar{3}m$ ou $R3m$	D_{3d^5}, C_{3v^5}	3	3	1
$\alpha - In_2Se_3(\mathbf{H})$	$P6_3/mmc$	D_{6h^4}	2	1	2
$\beta - In_2Se_3(\mathbf{R})$	$ m R\bar{3}m$	D_{3d^5}	3	3	1
$\gamma - In_2Se_3(\mathbf{H})$	$P6_{1}22$	D_6^2	6	1	6
$\delta - In_2 Se_3(\mathbf{H})$	$P\bar{3}m1$	D_{3d^3}	1	1	1

^{*a*}Ver Refs. [34, 41]

^bVer Ref. [34]

^cVer Ref. [41]

Na Tabela 5.6 indica que o grupo de simetria da fase $\alpha - In_2Se_3(\mathbf{R})$ é D_{3d^5} ou C_{3v^5} . De acorda com o parâmetro Z^B , existe uma unidade de In_2Se_3 por célula de Bravais para cada grupos espacial. Portanto dois átomos de Índio e três átomos equivalente de selênio, existem na célula unitária de Bravais. A posição de equilíbrio de cada átomo encontra-se em um sítio que tem sua própria simetria. Este sitio de simetria é um subgrupo da simetria completa da célula unitária de Bravais [41]. Este fator é muito importante para determinar a simetria local correta para cada átomo. Todas as possíveis simetrias do sítio para estes grupos espaciais são dadas na Tabela 5.7. Mas a maioria desses sítios não serão ocupados pelos átomos na célula unitária.

sítio de simetria da	N_0 de átomos equivalente	N_0 . de tipos de sítios
célula de Bravais	neste sítio da célula de Bravais	deste simetria
	$(N_0. \text{ em parênteses})$	(coeficientes)
	Grupo Espacial D_{3d^5} (166) R $\overline{3}$ m	1
$2D_{3d}(11)$	11	2
$C_{3v}(2)$	2	1
$2C_{2h}(3)$	3	2
$2C_2(6)$	6	2
$C_s(6)$	6	1
$2C_1(12)$	12	2
	Grupo Espacial C_{3v^5} (160) R3m	L
$C_{3v}(2)$	2	1
$C_s(3)$	3	1
$C_{1}(6)$	6	1

Tabela 5.7: Sítios de simetria para os espaços de grupos reservados para a fase $\alpha(R)$ do IS

A partir da Tabela 5.7 vê-se que para o grupo de simetria D_{3d}^5 R3m da fase- $\alpha(\mathbf{R})$ centrossimétrica, há apenas um sítio de simetria que pode acomodar dois átomos equivalentes, C_{3v} . Portanto a simetria local para o Índio é C_{3v} . Da mesma forma apenas um tipo de sítio pode acomodar somente três átomos equivalentes C_{2h} . Este, portanto, é a simetria local para o selênio.

Agora para o grupo espacial designado C_{3v^5} ou R3m não-centrossimétrico, há dois átomos equivalentes de Índio e três de selênio nessa célula de Bravais. Da Tabela 5.7 encontramos que este tem o sítio de simetria $C_{3v}(2)$; $C_s(3)$; $C_1(6)$. Por tal razão, apenas os locais C_{3v} acomodam dois átomos; portanto, segue-se que os átomos de Índio estão em sítios de simetria C_{3v} . Para os três átomos equivalentes de selênio, o sitio de simetria C_s acomodam três átomos. Este é o sítio de simetria para o selênio.

A Tabela 5.8 apresenta o sítio de simetria de cada átomo da fase $\alpha(R)$ para os dois possíveis grupos de simetria.

Tabela 5.8: Sítios de simetria de cada átomo nas fases $\alpha(R)$ IS.

Exemplos	$\alpha - In_2Se_3 \ (R\bar{3}m)$	$\alpha - In_2Se_3 $ (R3m)
Sitio de	In- C_{3v}	In- C_{3v}
átomos	Se- C_{2h}	Se- C_s
equivalentes		

Agora a espécies de simetrias serão identificadas para cada conjunto de átomos

deslocado-se no sítio. Este deslocamento se tornará nas vibrações da rede do cristal. Conhecendo os sítio de espécie para estes deslocamentos, as tabelas de correlação relacionará cada sítio de espécie grupal com uma espécie do grupo fator. Esta correlação identifica explicitamente as espécies de a vibração da rede em cristais e permite a predição da atividade IR ou Raman [41]. Para os cristais $\alpha - In_2Se_3$ (grupos espacial R3m e R3m), serão obtidas as representações irredutíveis que contém o número de espécies e as vibrações da rede.

5.3.1 Fase $\alpha - In_2Se_3$ (R3m)

Tal como é resumido na Tabela 5.8 os dois átomos de índio estão no sitio C_{3V} e os três átomos de selênio estão no sitio C_{2h} . Neste caso, cada conjunto de átomos equivalentes serão tratados separadamente.

Os Átomos de Índio. Mediante as tabelas de correlação será integradas as espécie do grupo do sítio que foram identificado para cada vibração da rede, com as espécies que contém essas vibrações da estrutura. Para iniciar este procedimento de correlação, a Tabela 5.9 dá uma parte do grupo do sitio C_{3v} e identifica as espécies de translação $T_x, T_y \in T_z$, (veja Ref. [39, 40] para Tabelas de carácteres). Estas translações dos átomos de Índio nas direções $x, y \in z$ terão a mesma natureza que os deslocamentos nas direções $x, y \in z$. Uma vez que as vibrações da rede têm o mesmo caráter que as translações, as espécies que contêm estas vibrações podem ser prontamente identificadas e essa informação é apresentada na Tabela 5.9

Sitio C_{3v} do	Especies de	Movimentos
átomos de In, especies	translação	paralelos
A_1	T_z	Movimento paralelo
		ao eixo z
A_2		
${ m E}$	T_x, T_y	Movimento paralelo
	U U	eixos x e y

Tabela 5.9: Especies do grupo do sítio C_{3v} e as translações

Utilizando as definições da subseção 3.1.5, (Eq. 3.6), os graus de liberdades vibracionais para cada espécies do grupo do sitio C_{3v} estão expressas na Tabela 5.10 para o conjunto equivalente de átomos de Índio.

			Graus de liberdade
C_{3v} especies	Translações	t^{γ}	vibracionais
	5		$f^{\gamma} {=} n.t^{\gamma}$
A_1	T_z	1	2
A_2		0	0
E	T_x, T_y	2	4

Tabela 5.10: Átomos de Índio no sitio C_{3v} . Cada espécie apresenta graus de liberdade vibracionais (n= 2 átomos/sítio).

A Tabela 5.10 estão presentes as vibrações dos átomos do índio designado como graus de liberdade em espécies A_1 e E. A seguinte etapa é correlacionar estas espécies com os grupo do sitio C_{3v} para as espécies do grupo fator D_{3d^5} .

Em primeiro lugar, escrevemos o grupo pontual C_{3v} como se segue.

C_{3v}	Ι	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
Ε	2	-1	0

Tabela 5.11: Tabela de caracteres do grupo pontual C_{3v} .

o qual C_{3v} é um subgrupo de D_{3d^5} . Isso é fácil de ver, porque D_{3d^5} contém os mesmos operadores de simetria como I, $2c_3$, $3\sigma_v$ mais operadores adicionais $3C_2$, $2S_6$. Para obter quais espécies de C_{3v} vai correlacionar com as espécies de D_{3d} , basta comparar os caráteres dessas operações comuns entre ambos os grupos pontual, que neste caso são $I, 2C_{3v}, 3\sigma_v$. Na Tabela 5.12 escrevemos os caracteres parcial de D_{3d} e incluindo apenas as operações comuns a ambos C_{3v} e D_{3d} como se segue.

Tabela 5.12: Tabela de correlação das especies do grupo do sítio C_{3v} para o grupo fator D_{3d} .

Ao integrar as espécies do sitio A_1 e E com o grupo fator, a partir das tabelas de correlação, é fácil identificar as vibrações da rede nas espécies do grupo fator. A Tabela5.13 mostra a correlação e identifica as espécies das vibrações de rede no cristal.

Tabela 5.13: Processo de correlação para as vibrações da estrutura dos átomos de Índio na fase $\alpha(R)$ entre o grupo do sítio C_{3v} e grupo fator D_{3d} .

				Grupo fator						
		grupo do sítio C_{3v}		D_{3d}					a_{γ}	a
$f^{\gamma b}$	C_{3v}	especie, γ	co rrelação	Especie, ζ	$C_{\zeta}{}^{c}$	a_{ζ}	=	a_{A_1}	+	a_E
2	(T_z)	A_1		A_{1g}	1	1	=	1	+	0
		A_1		A_{2u}	1	1	=	1	+	0
4	$(T_{x,y})$	${ m E}$		E_{q}	2	1	=	0	+	1
		Ε		E_u	2	1	=	0	+	1

 a Ver Eq. 3.5

 b Ver Eq. 3.4

 $^c\mathrm{Ver}$ Tab. 3.2

A Representação irredutível dos átomos de Índio é obtida através da Equação 3.2. Portanto, as espécies do grupo fator que contém as vibrações de rede, envolvendo átomos de índio, pode ser escrita como uma representação irredutível como segue Utilizando as Equações. 3.8 e 3.9 pode ser feita uma verificação dos cálculos para evitar possíveis erros. Os graus de liberdade vibracional nos grupos do sítio para n=2 átomos de Índio são

$$=3n=6=\sum_{\gamma}f^{\gamma}=6$$

Os graus de liberdade para o grupo fator é

$$= 3n = 6 = \sum_{\zeta} a_{\zeta} C_{\zeta} = 1 + 1 + 2 + 2 = 6$$

Átomos de Selênio (Se). Para obter a representação irredutível Γ_{Se} do conjunto de átomos de selênio, vamos seguir o mesmo procedimento descrito acima. Na Tabela 5.14 está de forma resumida as informações necessárias. \checkmark Informação: $Z^B = 1$ (Ver Tabela 5.6).

✓ Átomos equivalentes no sitio: Se- C_{2h} (n = 3).

Tabela 5.14: Correlação necessária para calcular as vibrações dos átomos de Selênio na fase $\alpha - In_2Se_3$ (R $\bar{3}$ m).

		Sítio		Grupo fator						
		do grupo C_{3v}	Correlação	D_{3d}					a_{γ}	
f^{γ}	t^{γ}	espécie, γ		espécie ζ	C_{ζ}	a_{ζ}	=	a_{A_1}	+	a_E
4.				A_{1g}	1	0		0	+	0
3	1	$(T_z) A_u$	_	A_{2g}	1	0	=	0	+	0
				E_g	2	0	=	0	+	0
6	2	$(T_{x,y}) B_u$		$\longrightarrow A_{1u}$	1	1	\equiv	1	+	0
				$\longrightarrow A_{2u}$	1	2	\equiv	0	+	2
				$\longrightarrow E_u$	2	3	=	1	+-	2

Fazendo a prova para evitar erros. Onde n = 3

Graus de liberdade =
$$\begin{cases} \text{Eq.} 3.8 : \sum_{\gamma} f^{\gamma} = 3n = 9\\ \text{Eq.} 3.9 \ \sum_{\zeta} a_{\zeta} C_{\zeta} = 3n = 9 \end{cases}$$

A representação irredutível das vibrações da estrutura do selênio pode ser calculado por $\Gamma_{Se} = \sum_{\zeta} a_{\zeta} \cdot \zeta$,

$$\Gamma_{Se} = \sum_{\zeta} a_{\zeta} \zeta = 0 \cdot A_{1g} + 0 \cdot A_{2g} + 0 \cdot E_g + 1 \cdot A_{1u} + 2 \cdot A_{2u} + 3 \cdot E_u$$
(5.2)
Fazendo a simplificação dos termos temos

$$\Gamma_{Se} = 1 \cdot A_{1u} + 2 \cdot A_{2u} + 3 \cdot E_u \tag{5.3}$$

Agora para obter a representação total do cristal $\Gamma^{Cristal}$ fazemos o suma das equações 5.1 e 5.3, que contém as representações irredutíveis individuais para cada conjunto de átomos equivalentes, ou seja,

$$\Gamma^{IS} = \Gamma_{In} + \Gamma_{Se}$$

$$\Gamma^{IS} = A_{1g} + A_{1u} + 3A_{2u} + E_g + 4E_u$$
(5.4)

Fazendo uma verificação sobre os graus de liberdade vibracionais, a Equação (3.9), para n = 5 átomos na célula de Bravais é

$$3 \cdot n = 15 = 1 \underbrace{C_{A_{1g}}}_{1} + 1 \underbrace{C_{A_{1g}}}_{1} + 3 \underbrace{C_{A_{2u}}}_{1} + 1 \underbrace{C_{Eg}}_{2} + 4 \underbrace{C_{Eu}}_{2}$$
(5.5)

Na equação 5.4 que representa as vibrações da rede para a estrutura do IS, estão incluídas as vibrações acústicas e ópticas. Por tal razão dos 3n graus de liberdade vibracionais, três são modos acústicos. Quando se considera apenas as vibrações no centro da zona de Brillouin, ou seja, K = 0, as três vibrações acústicas têm praticamente frequência Zero. Uma vez que as vibrações com frequência zero não são de interesse físico nesta zona [41], pode ser subtraído a partir da representação irredutível como sugerido na Equação 3.1.

Os modos acústicos são facilmente identificáveis, uma vez que têm o mesmo caráter que a translação. A tabela 5.15 mostra essas identificações.

Tabela5.15: Fator grupal D_{3d} , translações, e modos acústicos.EspecieisModos espaciais

	Lapecieis	modos espaciais
Especie D_{3d}	de translações	Acústicos
A_{2u}	T_x	\checkmark
E_u	$T_{x,y}$	\checkmark

Para este caso a representação irredutível das vibrações acústicas são:

$$\Gamma^{\rm acústico} = A_{2u} + E_u \tag{5.6}$$

$$\Gamma_{vib}^{IS} = \Gamma^{IS} - \Gamma^{\rm acústico}$$

$$\Gamma_{vib}^{IS} = A_{1g}(R) + A_{1u}(Inativo) + 2A_{2u}(IR) + E_g(R) + 3E_u(IR)$$
(5.7)

✓ Espectro Raman: duas vibrações fundamentais de rede são permitidas $A_{1g}(R) + E_g(R)$.

✓ Espectro infravermelho: cinco vibrações fundamentais da rede são permitidas $2A_{2u}(IR)$ + $3E_u(IR)$.

 \checkmark Uma vibração ficará inativa tanto no IR com no Raman: A_{1u} .

Na Tabela 5.16 são apresentados em forma resumido os resultados da identificação do grupo fator, número de vibrações da rede em cada uma das espécies e a atividades espetrais, além das regras de seleção para o Raman e atividade IR no cristal $\alpha - In_2Se_3$ (R) (R $\bar{3}$ m).

Tabela 5.16: Especies do grupo fator D_{3d} , translações, modos acústicos, número de vibrações da rede, e atividade IR e Raman em $\alpha - IS$ (R $\bar{3}$ m).

						Especies do	
Espécies do	Espécies	Espécies dos	Coefficientes	Coeficientes do	atividade	tensor de polarização	Atividade
grupo fator D_{3d}	de translação	modos acústicos	Γ^{IS}	Γ_{vib}^{IS}	IR^{a}	Raman^{b}	Raman
A_{1g}			1	1		$\chi_{xx} + \chi_{yy}, \chi_{zz}$	\checkmark
A_{2g}							
E_g			1	1		$(\chi_{xx} - \chi_{yy}, \chi_{xy})$	\checkmark
						(χ_{xz},χ_{yz})	
A_{1u}			1	1			
A_{2u}	T_x	1	3	2	\checkmark		
E_u	$T_x y$	1	4	3	\checkmark		

^aVer Tabelas de caracteres Ref. [39, 40]

^bVer Tabelas de caracteres Ref. [39, 40]

5.3.2 Fase $\alpha - In_2Se_3$ (R3m)

Sendo mostrado os passos en forma detalhada para obter as representações irredutíveis para a fase α -Romboédrica do In_2Se_3 com estrutura centrossimétrica, agora vamos a apresentar de forma sucinta os cálculos para a representação irredutível da outra possível estrutura α -Romboédrica não-centrossimétrica do In_2Se_3 .

Informação pertinente.

 $\mathbf{\Phi}$ Cristal: $\alpha - In_2Se_3(R3m), C_{3v}, Z^B = 1$ (ver Tabela5.6).

 \bigstar Átomos equivalentes no sitio: $In - C_{3v}$; $Se - C_s$ (ver Tabela5.8).

A representação irredutível de cada conjunto de átomos equivalentes:

$$\Gamma_{In} = A_1 + E \tag{5.8}$$

$$\Gamma_{se} = 2A_1 + A_2 + 3E \tag{5.9}$$

A representação irredutível da vibração acústica

$$\Gamma^{\rm acústico} = A_1 + E \tag{5.10}$$

A representação redutível do cristal é:

$$\Gamma_{vib}^{IS} = 2A_1(R, IR) + A_1(Inativo) + 3E(R, IR)$$
(5.11)

Tabela 5.17: Espécies do fator grupal C_{3v} , translações, modos acústicos, número de vibrações da rede, e atividade IR e Raman em $\alpha - IS(R3m)$.

						Especies do	
Espécies do	Espécies	Espécies dos	Coefficientes	Coeficientes do	atividade	tensor de polarização	Atividade
fator grupal D_{3d}	de translação	modos acústicos	Γ^{IS}	Γ_{vib}^{IS}	IR^{a}	$Raman^b$	Raman
A_1	T_z	\checkmark	3	2	\checkmark	$\chi_{xx} + \chi_{yy}, \chi_{zz}$	\checkmark
A_2							
E	$T_{x,y}$	\checkmark	4	3	\checkmark	$(\chi_{xx} - \chi_{yy}, \chi_{xy})$	\checkmark
						(χ_{xz},χ_{yz})	

^aVer Tabelas de caracteres Ref. [39, 40]

^bVer Tabelas de caracteres Ref. [39, 40]

Os modos Raman para ambos os grupos espaciais têm tensores Raman da forma [60].

$$A_{1g}:\begin{bmatrix} xx & \cdot & \cdot \\ \cdot & xx & \cdot \\ \cdot & \cdot & zz \end{bmatrix}; E_{g,1}:\begin{bmatrix} \cdot & xy & \cdot \\ yx & \cdot & yz \\ \cdot & zy & \cdot \end{bmatrix}; E_{g,2}:\begin{bmatrix} xx & \cdot & xz \\ \cdot & -yy & \cdot \\ -zx & \cdot & \cdot \end{bmatrix}$$
(5.12)

Os cálculos para o tensor Raman foram feitos no Bilbao Crystallographic Server.

5.4 Classificação dos Modos Vibracionais do In_2Se_3 Depositado

As medidas de Espalhamento Raman das amostras de IS tratadas termicamente em diferentes temperaturas (200, 300 e $400^{0}C$), são mostradas na figura 5.7. Os espectros foram realizados à temperatura ambiente em geometria de retroespalhamento sob dois tipos de laser, um (Nd:YAG) de comprimento de onda 1064 nm do *CETENE* e o outro de (Argônio) de comprimento de onda 532,13 nm no *LAMUME* da *UFBA*. Como pode ser observado nos espectros abaixo, o comprimento de onda de excitação parece modificar ligeiramente os picos obtidos, mesmos que eles ficam na mesma ordem. Evidentemente, os comprimentos de onda de excitação diferente não excitam todos os mesmos picos Raman [22].

A figura 5.7(a) mostra um espectro Raman do FTO na região espectral entre $250Cm^{-1}$ e $1200Cm^{-1}$ que está fora da região de interesse para o comportamento vibracional do IS ($86 - 250Cm^{-1}$) o que não interfere nos sinais do material depositado. Como se observa, o espectro revela a presença do pico característico do SnO_2 localizado em torno de $602 - 638Cm^{-1}$ identificado como sendo de simetria (A_{2u}) [62].

Para o caso do In_2Se_3 , optamos por usar Espectroscopia Raman para complementar os dados obtidos a partir do DRX e confirmar que as amostras possuem estrutura do tipo $\alpha - Rombodrica$. Portanto, está estrutura pertence ao grupo espacial R $\bar{3}$ m cujos modos normais de vibração no centro da zona de *Brillouin* são dados pela Equação 5.7

$$\Gamma_{vib}^{IS} = A_{1g}(R) + 2A_{2u}(IR) + E_g(R) + 3E_u(IR),$$

com 7 fônons ópticos dos quais os modos $A_{1g} \in E_g$ são Raman-ativos e os modos A_{2u} e E_u infravermelho-ativos. Na figura 5.7(a) e (b) observa-se há uma banda energética ampla entre 170 e $270Cm^{-1}$. Os ajustes dos sinais pelas gaussianas permitem identificar três picos, um mais intenso em $234Cm^{-1}$ e dois mais fracos em $182 e 203Cm^{-1}$. Já na figura 5.7(d) é possível observar ainda a presença de picos adicionais em 68, 92, 104, 159, $254Cm^{-1}$. Com base nos resultados obtidos por *R. Lewandowaka et.* al[60] destacados na tabela 5.18, pode-se dizer que as características 92, 104, 182, e $202Cm^{-1}$ indicam a presença dos modos de simetria E_g , $A_{1g}(\text{LO+TO})$, $A_{1g}(\text{LO})$ e $A_{1g}(\text{LO})$, confirmando assim que as amostras possuem estruturas Romboédricas, como foi observado nos resultados obtidos pela difração de raios-X apresentado na figura 5.4.

Figura 5.7: Espectros Raman obtido à temperatura ambiente: (a) SnO_2 : F depositado sobre vidro. A linha do laser utilizada foi de 532,13nm do Espectrômetro Raman do LA-MUME. (b) Amostra 2A depositada sobre o substrato de vidro recoberto com FTO. A medida foi feita após o recozimento à 200^oC. A linha do laser utizada foi de 532,13nm do Espectrômetro Raman do LAMUME . (c) Amostra 6A recozida à 300^oC. Linha do laser de excitação foi de 532,13mn. (d) Espectro da amostra 1A, após o recozimento à 400^oC. A linha do laser utilizado foi de 1064nm. do Espectrômetro Raman do CETENE.

Como indicado anteriormente, a frequência de vibração de $234cm^{-1}$, claramente visível nas três curvas ((b),(c) (d)), é característico da vibração de moléculas poliméricas de Se_n . O ombro em $254cm_{-1}$, menos visível no espectro 5.7 (b) e (c), por estar encoberto pelo alargamento do pico em $235cm^{-1}$, é atribuída à vibrações de anéis de $Se_n[21]$. Uma tentativa de classificação com base no trabalho de Wezka et al para as bandas Raman observadas nas amostras In_2Se_3 , são fornecidas na Tabela 5.19. Observa-se que a parte do espectro (abaixo de $100cm^{-1}$) de baixa frequência deve ser atribuído aos estados TA e LA, enquanto a parte de alta frequência é provavelmente devido à contribuição TO- LO. Está atribuição esta de acordo com as frequências de fônons que para a fase cristalina $\alpha - In2Se3$ são notificadas como sendo 180, 186 e $204cm^{-1}$ e para a fase $\gamma - In_2Se_3$ são reportados a ser de 150, 205, 224 e $233cm^{-1}$ [22]. Fazendo um analise comparativa de nossos resultados com os obtidos pelo autor, pode-se dizer que existem algumas características que estão em bom acordo (Vide Tabela5.19).

Tabela 5.18: Resultados de Lewandowska et. al [60] para espectros Raman da fase α romboédrica do In_2Se_3 medidos com luz polarizada de um laser de argônio da linha 488nm. Os espectros foram registrados em geometria de ângulo reto $k \perp z$ e retrodispersão $k \parallel z$ para seis diferentes configurações de espalhamento (xx) e (zz) para modos de simetria A_1 e configurações em polarização cruzada (yx, xy, yz, zx) para modos de simetria E. Modos de fônons para os tensores Raman dos grupos R $\bar{3}$ m e R3m foram designados. Nossos resultados ficam à esquerda

Neste Trabalho	Posição dos picos	Pola	rização P	aralela	a	Polariza	ção Cruzada	Designação
	(cm^{-1})							
	[60]	z	$k \bot z$	$k \bot z$	-	k z	$k \bot z$	
		xx,zz	xx	zz		xy,yx	xz, zx	
	27	m	m	m		m	m	Ε
92	91			VW		v w	W	\mathbf{E}
104	104	\mathbf{S}	VS	VS		v w	W	$A_1(\mathrm{LO+TO})$
	144			m			W	$A_1(\mathrm{TO})$
	180		m	W			V W	$A_1(\mathrm{TO})$
182	182	m						$A_1(LO)$
	187	$^{\rm sh}$				v w,b	V W	E
	193		m	m				$A_1(TO)$
202	203	m	vw(sh)	vw(sh)		v w,b		$A_1(LO)$
	237	VW	VW	V W			W	A_1

^as-forte; m-meio; w-fraco; vw-muito fraco; sh-ombro; b-amplo

Tabela 5.19: Na tabela mostra a atribuição sugerida para picos Raman observados por J. Weszka et. al[21] em filmes amorfos In_2Se_3 produzidos por evaporação térmica. Além disso são destacados os resultados obtidos neste trabalho.

Neste Trabalho	Frequência Raman (cm^{-1})	Sugestão do tipo de Vibração			
92	26-50-65-75	Excitação dos modos TA proveniente da			
		fronteira da zona de Brillouin			
	150	Modo da zona central relacionada ao cristal			
		$\gamma - In_2Se_3$			
	175	vibrações $In - Se$			
182-202	180-202-212-220-234-245	Excitação dos modos TO e LO proveniente			
		da fronteira da zona de Brillouin.			
335	235	Vibrações da cadeia de Se .			
254	254	Vibrações do anéis de Se_8 .			
	490	De segunda ordem RS.			

De um ponto de vista geral e com o objetivo de fazer a correlação de nossos resultados com os encontrados na literatura, observa-se a Tabela 5.20. Nesta são destacados os valores determinados para as posições das bandas Raman, obtidos a partir de várias linhas de excitação do laser. As utilizadas neste trabalho foram de 532, 13nm e 1064nm. Uma discussão que pode ser feita é a diferença relevante no número de bandas excitadas pelos dois tipos de laser. Observa-se que para a linha de 532, 13nm só excita três bandas de vibração, enquanto para a linha de excitação de 1064nm, os espectros apresentam oito bandas de vibração. Além disso podemos relacionar estes resultados com aqueles encontrados na literatura, pois naquele caso temos que as características de 104, 182, $202cm^{-1}$ presentes também nas amostras faz parte das bandas conhecidas na bibliografia para a fase α . Enquanto a 68 e $159cm^{-1}$ não foi possível identificar em base a revisão bibliográfica feita.

Fase In_2Se_3 Neste Trabalho α β (632, 8)(632)(488)(488)(1064)(1064)(532, 13) $(\lambda(nm))$ (488)(1064)(488)(632)[Ref.][60][22] [21][24][24][32] [21][22]Π 91 180 95 104 110 149.4* 522215168 182104186 104181 205178,677 2620592202 200 224 104 234180 204112203,7106 150^{*} 227,6 230 193146130205142Picos Raman (cm^{-1}) 203 175 150^{*} 224244159200 175233182 200202240235254

Tabela 5.20: Referências bibliográficas para os picos Raman do IS e dados obtidos neste trabalho.

5.4.1 Espectroscopia Raman da Amostra Eletrodepositada com Potencial Pulsado.

A figura 5.8 mostra um espectro Raman da amostra 4*A* eletrodepositada a partir de potencial pulsado, com um ciclo de trabalho de 66%. Claramente observam-se modos na região espectral entre $150cm^{-1}$ e $270cm^{-1}$ que estão associados as vibrações de estiramento do tipo *TO* e *LO*, além de vibrações moleculares como foi visto nos espectros da Figura 5.4. Aparentemente não existe uma diferença notável com relação aos espectros das figura 5.4 (b,c) a menos que sua fraca intensidade provocado pelo recozimento.

Figura 5.8: Deconvolução do espectro Raman para o caso da amostra 4A eletrodepositada com potencial pulsado.

5.5 Caracterização Óptica

Medidas de transmissão, reflexão e espectros de referência, foram feitas sobre um conjunto de filmes finos de In_2Se_3 electrodepositados sobre um sistema formado de $SnO_2/vidro$. Com a finalidade de analisar cuidadosamente as contribuições de SnO_2 e do vidro sobre os espectros de IS, foram feitas medidas do sistema $SnO_2/vidro$ e $IS/Sn0_2/vidro$, na região do espectro entre 0,25 e 2,2 μ m próximo infravermelho como apresentado nas Fig. 5.9(a) e 5.9(b). A partir das mesmas, será apresentada uma discussão quantitativa sobre esses resultados, os quais serão comparados com os modelos desenvolvidos para reflectância e transmitância¹ a partir das teorias de *Drude-Lorentz*. Além disso, através dos espetros de transmissão do IS, foram determinados o coeficiente de absorção e *gap* do material.

¹A transmitância como função do comprimento de onda é obtido pela divisão do espectro da amostra pelo espectro de referência (fonte). No caso da reflexão, a razão entre o espectro de reflexão e o espectro refletido por um espelho quase perfeito.

Figura 5.9: (a) Espectro de transmissão e reflexão no $Sn0_2+vidro$, experimentais e modelizados. (b) Espectro de transmissão e reflexão no $In_2Se_3 + SnO_2 + vidro$, experimentais e modelizados (AM-1A).

O filme de $SnO_2 + V$ demonstra possuir boa transmissão entre 73% e 83% no espectro visível, se estendendo ao início do infravermelho próximo. Esse alto coeficiente de transmissão começa a diminuir já a partir de 1, $2\mu m$, onde neste ponto há uma transição transmissão-refletor e o filme passa a diminuir gradativamente sua transmitância, além de, aumentar a sua refletividade gradualmente com o comprimento de onda da radiação incidente na amostra. A resposta do coeficiente de reflexão dos filmes de FTO está diretamente relacionada com a absorção da radiação pelos elétrons livres da banda de condução devido à dopagem com flúor ou até mesmo com o cloro do precursor [55]. Portanto, quanto maior for o número de portadores livres no filme maior será o coeficiente de reflexão. Já para a modelização dos espectros de transmissão e reflexão que foram aplicados para a análise dos resultados experimentais demonstram um ótimo acordo com os espectros medidos, alterando-se o número de elétrons das bandas de valência $(47 \times 10^{22} eV^2 cm^{-3}/N)$ e da banda de condução $(1, 7 \times 10^{22} eV^2 cm^{-3}/N)$, frequência de ressonância (4, 8eV), taxa de relaxação (0, 1eV) e espessura do filme $(0.35 \mu m)$.

O gráfico da Figura 5.9(b) reúnem as curvas de reflectância, transmitância (experimenteis e modelizados), para filmes de In_2Se_3 depositado sobre FTO + vidro. Para interpretar tais espectros, devemos nos remeter aos espectros de FTO + vidro. Nota-se que a presença do filme de In_2Se_3 produz alta absorção de energia na região do UV e parte do visível onde o coeficiente de transmissão do FTO está em torno de 83% (ver Fig.5.9). Já próximo de 0,53 μm , passa a transmitir a radiação alcançando uma transmissão media de 53% dos $0,97\mu m$ aos $1,08\mu m$ com um declínio a partir de $1,2\mu m$ por conta do efeito do FTO:F. O decaimento da transmissão é acompanhado pelo crescimento da reflexão do filme, que tem seu máximo de 33% em torno dos $1,63\mu m$. Assim, foram ajustados os cálculos descrito ao final da seção 3.3 (Modelo de Drude-Lorentz) para entender o comportamento óptico dos filmes de IS. O modelo mostrou-se bastante eficiente na concordância das curvas teóricas e experimentais e permitiu obter parâmetros de espessura, *gap* óptico, índice de refração e coeficiente de extinção para as amostras analisadas.

5.5.1 Coeficiente de Absorção

O coeficiente de absorção foi deduzido a partir dos espectros de transmissão do IS + FTO, usando a Equação 4.7.

Figura 5.10: Espectro do coeficiente de absorção do In_2Se_3

A Figura 5.10, traz as curvas dos coeficientes de absorção em função do compri-

mento de onda para o IS depositado à temperatura ambiente. O crescimento abrupto no início do gráfico corresponde à alta absorção do FTO+substrato de vidro para comprimentos de onda menores do que $0,53\mu m$ [55]. O segundo declínio (a partir de $\approx 0,85\mu m$) já é consequência da absorção do filme e carrega informações sobre a energia de gap, calculado mais adiante.

5.5.2 Gap

A queda acentuada das curvas de absorção refere-se normalmente a energia absorvida pelos elétrons para a transição entre a banda de valência e a banda de condução. Portanto pode ser usada para determinar o gap do material [11]. Supondo uma transição direta, o gap pode ser deduzido da plotagem de $(\alpha h\nu)^{1/n}$ em função da energia dos fótons da luz $h\nu$, onde n é um número que caracteriza o processo de transição, tendo valor de 1/2 para a transição direta permitida e 2 para transição indireta permitida[10, 11, 15, 61].

Figura 5.11: Gráfico de $(\alpha h\nu)^2$ como uma função da energia do fóton incidente $(h\nu)$ para o In_2Se_3 . A parte linear da curva foi extrapolada para obter o gap direto.

Fazendo uma ampliação da região de interesse como mostra na figura 5.11, que é a região perto da convergência de $(\alpha h\nu)^{1/n}$ para zero, percebemos que a curva do ajuste para n = 1/2 tem comportamento linear. Portanto o material possui um gap conforme deduzimos das projeções do segmento de reta (azul amostar 1A, preta 6A e vermelha 2A), para o valor de $(\alpha h\nu)^2$ igual a zero. Os valores do gap obtidos por este método, condiz com o valor obtido a partir da modelagem. Os dados obtidos tanto teóricos como experimentais são apresentados na Tabela 3.6.

	Experimental			Modelagem		
Amostras	Gap (eV)	Espessura (nm)		Gap (eV)	Espessura (nm)	
1A	1,91	501		$1,\!36$	610	
2A	$1,\!86$	751		$1,\!36$	700	
6A	$1,\!88$	974		$1,\!38$	784	

Tabela 5.21: Comparação das medidas obtidas por o método experimental (equação de Faraday e extrapolação) e teóricos (Drude-Lorentz) para espessura e gap. do IS

5.5.3 Índice de Refração e Coeficiente de Extinção

O índice de refração e o coeficiente de extinção dos filmes In_2Se_3 depositados sobre substrato de FTO, são obtido pela parte real e imaginária da função dielétrica. A Figura 5.12 reuni as curvas do índice de refração e coeficiente de extinção em função do comprimento de onda para o IS como depositado. A curva (2) mostra valores do índice de refração para a região do espectro eletromagnético de $0, 25 - 2, 2\mu m$. Podemos notar que o índice de refração decresce com o aumento do comprimento de onda (dependência com a frequência), mas para valores superiores de $\approx 1, 0\mu m$ se mantém praticamente constante devido a ausência de dispersão causada por elétrons livres [66]. A suavidade da curva mostra que a região espectral estudada está distante de bandas de absorção. Já na região entre $(0, 40 - 0, 90\mu m)$ o índice de refração aumenta quando diminui o comprimento de onda. O aumento rápido ocorre na vizinhança da borda de absorção $(0, 90\mu m)$. A dispersão para comprimentos nesta faixa se deve aos elétrons ligados [20, 45].

Figura 5.12: Curvas de dispersão de ambos n(2) e k(1) para In_2Se_3 , como deposito, derivadas a partir de medições utilizando o método de Drude-Lorenz para a função dielétrica.

A partir da curva (1), da Figura 5.12 pode ser visto que, para a região do visível entre 0,40 e 0,75 μ m é caracterizada por um elevado coeficiente de extinção com valores entre 0,12 para 0,06, isto é, de acordo com os elevados valores obtidos para a absorção, que são da ordem de $\approx 6 \times 10^4 cm^{-1}$ para a mesma gama. Esta situação permite considerar In_2Se_3 como um potencial candidato para utilização em dispositivos fotovoltaicos [65].

5.5.4 Influência da Espessura na Transmissão

A influência da espessura do filme sobre a transmissão do IS foram estudadas. A Fig. 5.13 mostra o efeito da espessura sob a transmitância espectral para três filmes finos de In_2Se_3 (como exemplo representativo). Espessuras entre 501 a 974nm foram obtidas variando a carga elétrica num potencióstato descrito na seção 4.1.3. Nota-se que a transmitância óptica tende a decrescer no espectro visível com o aumento da espessura. No entanto, o decréscimo provavelmente seria pelo aumento na absorção óptica no material, como consequência na diferença de concentração atômica (Se/Inver Tabela 5.19) nos filmes, tal como é fornecido por H. Bouzouita et al, e M.M. Cosmas et al, [63, 64] depositando In e Se a partir de Spray Pyrolysis. Mas, outra possível causa para o padrão observado é que haja múltiplos espalhamentos ópticos causado por caminhos ópticos mais longos de acordo com o aumento da espessura.

Figura 5.13: Transmitância do IS+substrato para diferentes espessuras.

Pode-se concluir que os filmes depositados com composições estequiometrias próximas a $Se/In \approx 1, 5$, apresentam maior transmitância e um aumento de Se acima de isso, reduziu a taxa de transmitância e desloco o corte, de comprimento de onda em direção a comprimentos de onda maiores [64].

5.5.5 Caracterização Óptica das Amostras Recozidas

Buscando uma comparação para o comportamento das amostras para três temperaturas de recozimento distintas: $200^{\circ}C$, $300^{\circ}C$ e $400^{\circ}C$ foram obtidos espectros de reflexão e transmissão. Os gráficos das Figuras 5.14(a, b, c), Figura 5.15 e Figura 5.16 apresentam a transmitância, refletância, Índice de refração, coeficientes de extinção e gap para essa temperaturas. Nota-se un decaimento na transmitância na medida en que a amostra é aquecida. A $200^{\circ}C$ e $300^{\circ}C$ a amostra transmite em média 9% menos do que em temperatura ambiente(TM), na região do visível e parte do infravermelho. A $400^{\circ}C$ a transmitância cai 11%. Já a refletância em $200^{\circ}C$ apresenta uma amplificação de 4% a 20% maior do que a refletância à TM, na faixa de 1, $17\mu m$ ao longo do espectro infravermelho. Para as demais amostras, observa-se um diminuição na proporção em que a temperatura sobe, não passando de $\approx 12\%$ da variação quando comparadas às curvas de (TM) na região do visível e parte do infravermelho, como mostra o gráfico 5.14 a seguir.

Figura 5.14: Espectro do coeficiente de transmissão e reflexão do In_2Se_3 para temperaturas (a) 200^0C , (b) 300^0C e (c) 400^0C .

De acordo com *Sahu et. al.*[15] isto é devido à aumento da absorção com o incremento da temperatura de recozimento.

O gráfico da Figura 5.15 apresenta o índice de refração n e coeficiente de extensão k do IS como depositado e após do tratamento térmico à temperaturas 200, 300, 400⁰C. Note-se que para 200⁰C a curva do índice de refração apresenta caraterísticas de dispersão semelhante à representada pela camada como depositada, mas para temperaturas 300 e 400⁰C parece ser que a magnitude do índice de refração diminuiu, em relação ao obtido para a camada como depositado, o qual significa que a dispersão da luz dentro do matéria torna-se cada vez menor. Mas na verdade este fato não está em comum acordo com o coeficiente de transmissão e reflexão, que para está temperatura apresentaram uma redução. Acredita-se esto seja pela falta de um bom ajuste das curvas teóricas e experimentais da transmissão e reflexão.

Figura 5.15: Espectro do coeficiente de extinção k(1) e índice de refraxão n(2) do In_2Se_3 para temperaturas de recozido a (a) 200^0C , (b) 300^0C e (c) 400^0C .

As curvas do quadrado da absorção para as temperaturas de (a)200⁰C, (b)300⁰C e (c)400⁰C apresentadas na figura 5.16 admitiram gaps de 1,67eV(azul), (1,66 e 1,50 eV)(vermelho) e (1,57 e 1,42)(preto), respectivamente. Porém esperaram-se que o comportamento em função da temperatura tivesse variação expressiva com relação à fase do material, como é previsto na literatura[3, 15], mas como é observado e confirmado pela espectroscopia óptica, DRX, e espectroscopia Raman; o recozido de nossas amostras a 200, 300 e 400⁰C, parecem ter uma transformação do estado de múltiplas fases a fase única (α), pela tendencia do gap a 400⁰C para valores de 1, 36eV aproximadamente. Os resultados estão de acordo com os de Herrero et al. para filmes preparadas por métodos eletroquímicos [13].

Figura 5.16: Extrapolação das curvas do quadrado do coeficiente de absorção para IS nas temperaturas (1) $200^{0}C$, (2) $300^{0}C$ e (3) $400^{0}C$.

Do espectro de DRX (Fig.5.4), para temperatura de recozimento de $200^{\circ}C$ podese ver a presença de picos referente ao FTO, bem como as fases (β , e α) do IS. Para a mesma temperatura o gráfico $(\alpha h\nu)^2$ Vs $h\nu$ parece ter, aparentemente só un valor do gap de 1,84eV que é maior do que o relatado E_g de $\alpha - In_2Se_3$ (1,35 eV)[3, 10– 12, 22, 23] por causa de sua cristalinidade[58]. Mas para 300 e 400°C havia duas bandas gap correspondentes à fase mista presente nas amostras. Para $300^{\circ}C$ o valor dos gaps foram 1,83 e 1,67eV, enquanto para $400^{\circ}C$ este foram 1,58 e 1,82eV. Deste o valor mais baixo pode ser devido fase α enquanto o mais elevado deveu-se a $\beta - In_2Se_3$. Gap óptico da fase $\beta - In_2Se_3$ relatados por Julien et al. foi de 1,55eV[23]. Assim poderíamos dizer que o filme formado a $400^{\circ}C$ tem uma mistura de fase $\alpha \in \beta$, com uma presença maior da primeira, vista a partir do analises de DRX com picos mais pronunciados para esta fase.

Apesar dos resultados obtidos, não foi possível crescer filmes finas de IS en fase $\gamma - In_2Se_3$, que tem um gap de energia de 1,93eV[10, 13, 16, 32, 48], o que a torna mais adequado para uso como camada buffer[3, 10]. Espera-se que para temperaturas de recozido maiores de 400^oC tenha lugar uma transição de fase a partir de α , β para γ .

Tabela 5.22: Comparação das medidas obtidas por o método experimental (equação de Faraday e extrapolação) e teóricos (Drude-Lorentz) para espessura e gap. do IS

		Gap(eV) Experimental		$\operatorname{Gap}(eV)$	do Modelagem
Amostras	Temperatura $({}^{0}C)$	Antes	Após	Antes	Após
1A	400	1,91	1,58-182	1,36	1,40
2A	200	$1,\!86$	184	$1,\!36$	1,36
6A	300	$1,\!88$	$1,\!67\text{-}1,\!83$	$1,\!39$	$1,\!35$

5.6 Caracterização Morfológica

As micrografias de MEV, obtidas para as amostras eletrodepositadas com carga elétrica de 1,5 C(1A), 2,5 C(2A) e 2,8 C(6A) (a quantidade de carga depositada define a espessura da amostra) são mostradas na Figura 5.17. As amostras apresentam diferentes concentrações de deposito e temperatura de recozimento. Analises que sera abordado mais para afrente. Na Figura estão duas imagens. Na esquerda a visão da superfície da amostra com magnificação de $\times 20,000$ vezes e na direita a visão transversal da mesma amostra, magnificada $\times 5,000$ vezes. Para pequenas quantidades de carga elétrica ocorre a formação de pequenos grãos de In_2Se_3 que podem ser vistos na imagem da superfície e na transversal. Com o aumento da carga eletrodepositada, estes grãos crescem isotropicamente distribuindo-se de forma relativamente homogênea e regular por toda a superfície, e consequente formação do filme fino compacto. Na Figura 5.17(a) traz imagens em vista superior e transversal para a amostra depositada a 1,5C. A imagem de topo da superfície revela uma estrutura bastante regular formada por uma superfície granular poco uniforme e não definido com alguns grão maiores disperso sobre a superfície. As imagens da seção transversal mostra aparentemente una estrutura compacta com uma boa aderência ao substrato $(SnO_2 + vidro)$.

Na Figura 5.17(b) é mostrada uma imagem para uma amostra com carga eletrodepositada de 2,5 C, que apresenta uma superfície solta com partículas granulares redondas e pronunciadas, onde há a formação de filme fino, confirmado na imagem transversal, mas ainda existem buracos que podem ser vistos na imagem da superfície da amostra. Na Figura 5.8(c) a imagem de uma amostra com quantidade de carga eletrodepositada igual a 2,8 C onde, à vista superior, mostra que o filme fino apresenta menor porosidade tornando a mais suave e homogênea. Mas não só este fato afeta a morfologia das amostras. De acordo com Y. Yong et. al [67], a poca concentração do elemento índio e excesso de selênio nas amostras tem efeito marcante na morfologia. Quando a concentração do elemento índio depositado nas amostras diminui de 33,3%(a) para 29,7(b) e 26,1%(c) (ver Tabela 5.2), párese ser que a superfície do filme, torna-se mais compacta e com a granulação pouca definida ao longo de toda a região analisada. Mais para um analises rigoroso se precisa ter a espessura fixa.

(Esquerda)

(Direita)

Figura 5.17: Vista superior (coluna da esquerda) e o corte transversal correspondente (coluna da direita) imagens de MEV de filmes In_2Se_3 com diferentes concentrações de índio e carga depositada (a:1A, b: 2A e c:6A).

Abaixo são apresentadas micrografias comparativas para as amostras de In_2Se_3 antes e após o processo de recozimento. Tanto as imagens referentes à amostras como depositadas, quanto às imagens referentes à amostras recozidas são tomadas na mesma amplificação de $\times 2,000$ e $\times 20,000$. Embora não se tomou o cuidado de analisar a mesma região nesses dois momentos distintos, mesmo assim, é possível estabelecer uma comparação entre elas. As amostras foram recozidas 200, 300 e $400^{0}C$ e micrografias correspondentes são mostradas nas figuras 5.18(Direita), 5.19(Direita) e 5.20(Direita), respectivamente.

Recozido a $200^{\circ}C$

A superfície da amostra 2A, eletrodepositada sob um potencial catódico -1, 0V vs Ag/AgCl durante 27 minutos à temperatura ambiente, mostra uma estrutura granular uniforme com contorno de grãos muito bem definidos e tendo alguns maiores dispersos sobre a superfície do filme, como depositado. As porcentagens relativas aos elementos Se e In depositados na amostra são 66,69% e 33,31%, respectivamente.

A superfície do filme, agora recozido à $200^{\circ}C$ durante 30 minutos, exibe também uma uniformidade, porém com uma pequena melhoria na sua estrutura granular. Na imagem amplificada ×20.000 vezes (Direita) observa-se a formação de nanoestruturas na forma de troncos com aparência amorfa. Um análise da área ou mapeamento por *EDS* sobre a superfície da amostra, confirma que as nanoestruturas são formadas de átomos de Selênio que não reagiram. Este fato também é identificado através do *DRX* o qual apresenta picos fracos referente estes Se suspendo , indicando uma naturaleza amorfo, como pode ser visto na Figura 5.4(a). Resultados semelhantes foram relatados anteriormente [68].

Figura 5.18: Imagenes de MEV da amostra 2A. (Esquerda) como depositada em ampliação de 2,000 e 20,000 vezes. (Direita) como recozido a $200^{0}C$ em ampliação de 2,000 e 20,000 vezes

Em relação à estequiometria, após o recozimento, $200^{0}C$, a porcentagem atômico relativo dos elementos Se e In na amostra vario de 66,69% à 60,94% e de 33,31% para 39,05%, respectivamente.

Recozido a $300^{\circ}C$

A amostra 6A eletrodepositada sob um potencial catódico de -1,0V vs Ag/AgCl durante 49 minutos, apresenta porcentagens relativas aos elementos Se e In presentes na amostra de 73,88% e 26.12%, respectivamente. Já para uma temperatura de recozimento de $300^{\circ}C$ durante 30 minutos, em atmosferas de nitrogênio, as porcentagens relativas dos elementos Se e In, varia de 73,88% para 68,02% no caso do Selênio e 26,12% para 31,98% no caso do Índio. Esta mudança na estequiometria, proporciona uma melhoria na morfologia da superfície, como é visto nas imagens de MEV apresentadas abaixo. Na ampliação $\times 2,000$ o filme apresenta alguns defeitos em sua formação (como buracos e imperfeições)(lado Esquerdo). Esses defeitos se mantiveram após o recozimento, além disso formação de pequenos cristalitos e estrutura aparentemente mais compacta foram observados (lado direito). Para uma ampliação maior ($\times 20,000$), após o recozimento, pode ser notado que a quantidade de grãos mais protuberantes, distribuídos aleatoriamente sobre a superfície, diminuíram. Os grãos têm uma estrutura granular mais definida, do que àqueles no filme como depositado. Além disso, pode-se observa-se de novo, a formação de nanoestruturas, agora em forma de hastas aparentemente em processo de cristalização. A análise de DRX confirma a evolução da cristalização das fases presentes na amostra (ver Figura 5.4(b)).

Figura 5.19: Imagenes de MEV da amostra 6A. (Esquerda) como depositada em ampliação de 2,000 e 20,000 vezes. (Direita) como recozido a $300^{0}C$ em ampliação de 2,000 e 20,000 vezes

Recozido a $400^{\circ}C$

Nas imagens de MEV da amostra 1A recozida à $400^{\circ}C$, são observada superfícies com estruturas irregulares grandes e escassas, acompanhadas de uma grande quantidade de estruturas pequenas distribuídas mais ou menos uniformemente($\times 2,000$). Essas estruturas pequenas (hastes) possuem forma definida e com simetria aparentemente cilíndrica, e podem ser vistas com maior clareza na ampliação $\times 20,000$, onde vemos que há diferença em relação a amostra recozida sob uma temperatura de $300^{0}C$. As medidas de difração de raios x evidencio a presença de selênio nessas nanoestruturas e a evolução de sua cristalinidade com a temperatura (vide Figura 5.4(c)). Isto pode estar relacionado com o processo de evaporização e recristalização do material [15].

Figura 5.20: Imagenes de MEV da amostra 1A. (Esquerda) como depositada em ampliação de 2,000 e 20,000 vezes. (Direita) como recozido a $400^{\circ}C$ em ampliação de 2,000 e 20,000 vezes. As porcentagens relativas aos elementos Se e In como depositados e após do recozimento são (73,88% para 68,02) e (26,12 para 31,98), respectivamente.

CONCLUSÕES E PERSPECTIVAS

Neste trabalho foram fabricados filmes finos de In_2Se_3 sobre o substrato de FTO a partir da técnica de eletrodeposição com êxito. Os filmes foram crescidos variandose os parâmetros como carga depositada, tempo de deposição e volumes das soluções. Além disso foram recozidas às temperaturas $200^{\circ}C$, $300^{\circ}C$ e $400^{\circ}C$. Com as medidas realizadas de EDS foi possível comprovar que os filmes depositados para os mesmos volumes das soluções e para tempos curtos tiveram uma taxa de deposição de selênio maior com relação ao índio. Por outro lado, à medida que o tempo de deposição aumentou a presença de índio foi mais perceptível, mostrando desta forma que a estequiometria das amostras podem ser melhoradas com o aumento da espessura. Os filmes recozidos a $200^{\circ}C$ e $300^{\circ}C$ mostraram apenas uma leve modificação na evolução das concentrações atômicas de índio e selênio. Mas para temperaturas de $400^{\circ}C$ as melhoria foram significativas. Este fato trouxe consigo uma melhora na estequiometria das amostras conseguindo obter valores da razão In/Se aproximada do valor esperado.

Os resultados de difração de raios-X revelaram o caráter cristalino para todas as amostras como depositadas. Além disso, orientação preferencial ao longo dos planos (009),(104) e (1010) da estrutura α -romboédrica. O recozimento causou uma amplificação dos picos indicando uma melhoria na cristalinidade.

A partir do método de correlação foram determinadas as representações irredutíveis para os grupos de simetria $R\bar{3}m$ e R3m da fase α -romboédrica. Os espectros Raman das amostras recozidas apresentaram uma densidade de fônons indicando a presença dos modos de simetria E_g , $A_{1g}(LO+TO)$, $A_{1g}(LO)$ e $A_{1g}(LO)$, da representação irredutível do grupo de simetria $R\bar{3}m$. Confirmando assim que as amostras possuem estrutura α -romboédrica, como foi observado nos resultados obtidos pela difração de raios-X.

As medidas de transmissão e reflexão mostraram que as camadas de IS depositadas sobre FTO produziram alta absorção de energia na região do UV e parte do visível onde o coeficiente de transmissão do FTO está em torno de 83%. Já na região do infravermelho o coeficiente de absorção é um pouco mais acentuada indicando uma baixa concentração de portadores de carga na banda de condução.

Os ajustes teóricos e experimentais das curvas de transmissão e reflexão a partir do modelo de Drude-Lorentz para a função dielétrica, mostraram-se bastante eficiente, permitindo obter constantes ópticas como índice de refração e coeficiente de extinção, parâmetros importantes que caraterizam a interação da radiação com a amostra. O índice de refração para este caso mostrou que a região espectral do In_2Se_3 superior a 1,0µm apresenta poca dispersão de luz causada por elétrons livres, mas para a vizinhança da borda de absorção a dispersão aumenta.

Dos resultados na morfologia dos filmes finos de In_2Se_3 se observou que o fenômeno de crescimento dos grãos e distribuição dos mesmos na superfície do substrato dependem da espessura do filme e da temperatura de recozimento. Além disso, revelaram que a razão de $Se/In \approx 1,5$ desempenha um papel importante na determinação da morfologia da superfície do filme.

A análise em MEV indica a presença nanoestruturas na forma de troncos com aparências amorfas para os filmes recozidas a $200^{0}C$. Já para as temperaturas de $300^{0}C$ e $400^{0}C$ estas nanoestruturas começaram a diminuir seu tamanho e apresentaram estrutura definida. Além do mais, quando os filmes como depositados são recozidos a $200^{0}C$, o tamanho do grão diminui, enquanto o recozimento a $300^{0}C$ $400^{0}C$ conduziram ao aumento do tamanho de grão.

Perspectivas

• Tendo em vista que na literatura consideram que o material In_2Se_3 com fase γ são mais ideais para ser aplicada como camada buffer em células fotovoltaicas de heterojunção, o que não foi alcançado neste trabalho, na perspectiva para futuros trabalhos utilizando a técnica de electrodeposição para o crescimento de filmes finos IS é testar com diferentes concentrações da solução eletrolítica, além de efetuar recozimentos dos filmes à temperaturas maiores de $400^{\circ}C$ para verificar a mudança de face α para face γ .

REFERÊNCIAS BIBLIOGRÁFICAS

- Hariskos, D.; Spiering, S.; Powalla, M. Buffer layers in Cu(In, Ga)Se₂ solar cells and modules. Thin Solid Films 480-481 (2005) 99 -109.
- [2] Tavares, P. J; Galdino, M. A. Manual de Engenharia para Sistemas Fotovoltaicos
 Rio de Janeiro, Março, (2014). Grupo de Trabalho de Energia Solar-GTES.
- [3] Gordillo, G.; Calderon, C.CIS thin film solar cell with evaporated InSe buffer layers Sol. Energy Mater. Sol. Cells 77 (2003) 163.
- [4] Canava, B.; Guillemoles, J. F.; Yousfi, E. B.; Cowache, P.; Kerberb, H.; Loeffl, A.; Schock, H. W.; Powalla, M.; Hariskosc, D.; Lincot, D. Wet treatment based interface engineering for high efficiency Cu(In, Ga)Se₂ solar cells. Thin Solid Films 361-362 (2000) 187-192.
- [5] Boyle, D. S.; Bayer, A.; Heinrich, M. R.; Robbe, O.; Brien, P. O. Novel approach to the chemical bath deposition of chalcogenide semiconductors. Thin Solid Films 361-362 (2000) 150-154.
- [6] Nemec, P.; Nemec, I.; Nahalkov, P.; Knizek, K.; Maly, P. Ammonia-free chemical bath deposition of CdS films: tailoring the nanocrystal sizes. Journal of Crystal Growth 240 (2002) 484-488
- Herrero, J.; Gutiérrez, M.T.; C. Guillén, C.; Doña, J. M.; Martínez, A.M.; Chaparro, A. M.; R. Bayón, R. *Photovoltaic windows by chemical bath deposition*. Thin Solid Films 361-362 (2000) 28-33.
- [8] Sandoval-Paz, M. G.; Sotelo-Lerma, M.; Valenzuela-Jáuregui, J. J.; Flores-Acosta, M.; Ramírez-Bon, R. Structural and optical studies on thermal-annealed In₂Se₃ films prepared by the chemical bath deposition technique Thin Solid Films 472 (2005) 5-10.

- [9] Clavijo J.; Romero, E. and Gordillo, G. Effect of Subtrate Temperature on the Optical, Structural and Morphological Properties of In₂Se₃ Thin Films Grown by a two-step Process. J. Phys. (2009): Conf. Ser. 167 012016.
- [10] Valdés, M.; Vázquez, M.; Goossens, A. Electrodeposition of CuInSe₂ and In₂Se₃ on flat and nanoporous TiO₂ substrates. Electrochimica Acta, (2008) v. 54, pp. 524-529.
- [11] Massaccesi, S.; Sanchez, S.; Vedel, J. *Electrodeposition of Indium Selenide* In_2Se_3 . Journal of Electroanalytical Chimistry (1996) 412 pp 95-101.
- [12] Gopal, S.; Viswanathan, C.; Karunagaran, B.; Sa. Narayandass, K.; Mangalaraj,
 D. and Junsin Yi. Preparation and Characterization of Electrodeposited Indium Selenide Thin Films. Cryst. Res. Technol. 40, (2005), N₀ 6, 557-562.
- [13] Herrero, J. and Ortega, J. Electrochemical Synthesis of Photoactive In₂Se₃ Thin Films. Solar Energy Materials 16 (1987) 477-485.
- [14] Kobbi, B.; Ouadjaout, D.; Kesri, N. Growth and characterization of In-Se films. Vaccum 62 (2001) 321.
- [15] Sahu, S. N. Preparation, structure, composition, optical and photoelectrochemical properties of vacuum annealed In-Se thin films Thin Solid Films 261 (1995) 98.
- [16] de Groot, C. H.; and Moodera, J. S. Growth and Characterization of a Novel In_2Se_3 Structure. Journal of Applied Physics, (2001) v. 89, pp. 4336-4340.
- [17] Ashcroft N. W.; and Mermin, N. D.; Solid States Physics, Brooks Cole (1976)
- [18] Ziman, J. M. Theory of Solids, Cambridge, New York (1972)
- [19] Hughes, D. D.Low Temperature Physics, 27, p.967-p.979 (2001)
- [20] Cardona, P. Yu, M. Fundamentals of Semicondutors, Springer, Fourth Edition 375-422
- [21] Weszka, J.; Daniel, Ph.; Burian, A.; Buria, A. M.; Nhuyen, A. T. Raman Scattering in In₂Se₃ Amorphaus flims Journal of Non- Crystal Solids (2000) 265 98-104.
- [22] Marsillac, S.; Berne, J.C.; R. Le Ny, Conan, A. A new Simple Technique to abtain In₂Se₃ Polycrystalline Thin Films. Vacuum (1996) 46, 1315-1323.

- [23] Julien, C.; Cheavy, A.; Siapkas, D. Optical Properties of In₂Se₃ phases Phys. Status Solidi A 118 (1990) 553.
- [24] Tao, X.; and Gu, Y. Crystalline Phase Transformation in Two-Dimensional In₂Se₃ Thin Layers. Nano Lett. (2013), 13, 3501-350
- [25] Madelung, O.; Rosler, U. and Schulz, M. Crystal Structure, Phases In₂Se₃. The Londolt-Bornstein Database. Ternary Compounds, Organic Semiconductors, Springer (2000) Vol 41E
- [26] Nishida, T.; Terao, M.; Miyauchi, Y.;Horigome, S. Kaku, T.; and Ohta, N.; Appl. PHYS. Lett. (1987) 50,667.
- [27] Manno, D.; Digiulio, M. D.; Siciliano, T.; Filippo, E. and Serra, A. J. Phys. D: Appl. Phys. (2001) 34.2097.
- [28] Kenway, M. A.; Elshazly, A. F.; Afifi, M. A.; Zayed, H. A. and Elzahid, H. A. Thin Solid Films (1991) 200, 203.
- [29] Koskin, V. M.; Galchinetskii, L. P.; Kulik, V. M. and Minkove, B. L. Solid State Commun. (1973) 13, 1.
- [30] Parlak, M.; Ercelebi. C. The effect of substrate and post-annealing temperature on the structural and optical properties of polycrystalline InSe thin films, Thin Solid Films 322 (1998) 334?339
- [31] Jasinski, J.; Swider, W.; Washburn, J. and Liliental-Weber, Z. Crystal structure of $k In_2Se_3$, Berkeley, (2002) CA 94720.
- [32] Lyu. D.Y.; Lin, T.Y. Structural and optical characterization of single-phase films with roomtemperature photoluminescence. Journal of Alloys and Compounds, (2010) v. 499, pp. 104-107.
- [33] Ho, C. H. Amorphous effect on the advancing of wide-range absorption and structural-phase transition γ - In₂Se₃ polycrystalline layers Scientific Reports, (2014) pp 4:4764, .
- [34] Popovic S., A.Tonejc, B. Grezeta-Plenkovic, B. Celustka, R.Trojko, Revised and new crystal data for indium selenides. J. Appl. Crystallogr. 12 (1979) 416.
- [35] Popovic, S. et al, X-Ray Diffraction Measurement of Lattice Parameters of In₂Se₃ Phys.Stat.Sol. (1971) (a) 6, 301.
- [36] Osamura, K.; Murakami, Y.; Tomie, Y. J. Phys. Soc. Jpn. 21 (1966) 1848.

- [37] Yu, X.; Hou, T.; Sun, X. and Li, Y. Atomistic structures and phase transition of In₂Se₃ nanowires studied by DFT calculations and synchrotron radiation X-ray diffraction. Solid State Communications, (2013) 162 28-33.
- [38] Mildred S. Dresselhaus, Gene Dresselhaus, and Ado Jorio. *Group Theory.* Springer-Verlag Berlin Heidelberg, (2010).
- [39] Oliveira. G. M. Simetria de Moléculas e Cristais. Fundamentos da Espectroscopia Vibracional. BookMan Editora. S.A, (2009).
- [40] Fazzio, A.; Watari, K. Introdução à Teoria de Grupos, aplicada em moléculas e sólidos. Editoraufsm, Santa maria, (2009) 2^a edição.
- [41] Fateley, W.G.; Dollish, F. R.; McDevitt, N.T.; Bentley, F. F. Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method, Wiley-Interscience, (1972), New York.
- [42] Kittel, C. Introduction to Solid State Physics (Wiley, New York, 1966), 3rd ed.
- [43] Slater, J. C. Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1963-1967), Vols. I-III.
- [44] Wieting, T. J.; and Schiluter, M. Electrons and Phonons in Layered Crystal Structures. Dordrecht, Holland, D. Reidel Publisching Company. Edition (1979)
 V. 3 p 328-345.
- [45] Dressel, M. e Gruner, G. Eletrodynamics of Solids, Optical Properties of Electrons in Matter.s.l. Cambridge, (2003).
- [46] Reitz, J.; Milford, F. J. e Christy, R. W. Fundamentos da Teoria Eletromagnética. s.l. Elsevier (1982).
- [47] Da Silva, M. S. Estudos de Filmes Finos de CuInSe₂ para Aplicação em Células Fotovoltaicas, Tésis (Doutorado). (2010) Universidade Federal da Bahia, Instituto de Física.
- [48] Chandrasekar, M. S.; Pushpavanam, M. Electrochimica, Acta, (2008) 53,3313-3322
- [49] Celustka, B.; Bidjin, D.; Porovic, S. Conductivity and some photoelectrical properties of pressed In₂Se₃ Phys. Stat. Sol. (A): Appl. (1971), Res. 6 699
- [50] Balasubramanian, M.; Mural K. R. Photocondutive Properties of Pulse Plated In_2Se_3 Films, International Jornal of Research, (2012) (IJSR).

- [51] Lee, J. J; Lee, J. D; Ahn, B. Y; Kim, H. S; Kim, K. H. Strutural and Optical of α – In₂Se₃ Films Prepared on Indium-Tin-Oxide Subtrsts. Journal of the Physical Society, Vol. 52, N₀. 2, February (2008), pp. 357-361.
- [52] Guinier, A. X-Ray Diffraction In Crystals, Imperfect Crystals, and Amorphous Bodies, Dover, San Francisco (1963).
- [53] Zhou, W. and Wang, Z. L. Fundamentals of Scanning Electron Microscopy, In:Se Scanning Microscopy for Nanotechnology, Springer, (2006) New York
- [54] Carlos Sá, Digital analyses of SEM images for materials characterization and interface surface studies of biological materials, CEMUP, Porto.
- [55] Dos Santos T. N. Crescimento de Filmes Finas de SnO₂ e SnO₂ : F por pirólise de Spray e Caracterização para Aplicações em Célula Fotovoltaicas, Dissertação (Mestrado). (2015) Universidade Federal da Bahia, Instituto de Física.
- [56] Pierson, H. Handbook of Chemical Deposition New York (1999) Noyes Publication.
- [57] Kang, S. H. Characterization of eletrodeposited CuInSe₂ (CIS) film. Electrochimica Acta, (2006), 4433-4438.
- [58] Ikeda, S.; Kamai, R.; Lee, S. M.; Yagi, T.; Harada, T.; Matsumura, M. A superstrate solar cell based on In2(Se, S)₃ and CuIn(Se, S)₂ thin films fabricated by electrodeposition combined with annealing. Solar Energy Materials & Solar Cells 95 (2011) 1446-1451
- [59] Amory, C.; Bernede, J. C.; Marsillac, S. Study of a growth instability of $\gamma In2Se3$ Journal of Applied Physics 94 (2003) 6945-6948;
- [60] Lewandowska, R.; Bacewicz, R.; Filipowicz, J.; Paszkowicz, W. Raman scattering In₂Se₃ crystals, Materials Research Bulletin 36 (2001) 2577-2583.
- [61] Julien, C.; Eddrief, M.; Kambas, K. and Balkanski. M. Electrical and Optical Properties of In₂Se₃ Thin Films, Elsevier Sequoia/Printed in The Netherlands 137(1986) 27-37
- [62] Katiyars, R. S.; Dawsons, P.; Hargreaves, M. M. and Wilkinson. G. R. Dynamics of the rutile structure III. Lattice dynamics, infrared and Raman spectra of SnO₂. J. Phys. C: Solid St. Phys., 1971, Vol. 4. Printed in Great Britain.

- [63] Bouzouita, H.; Bouguila, N.; Duchemin, S.; Fiechter, S.; Dhouib, A. Preparation and characterization of In₂Se₃ thin films, Renewable Energy 25 (2002) 131-138.
- [64] Cosmas, M. M.; Stephen, T. M.; Julius, M. M. Thermal and compositional defects in chemical spray pyrolysed indium selenide (In₂Se₃) thin films: Effects on film properties, Journal of Optoelectronics and Advanced Materials 13 (2011), p. 1240-1245.
- [65] El Shair H. T.; and Bekheet, A. E. Effect of Heat Treatment on the Optical Properties of In₂Se₃ Thin Films, J. Phys. D: Appl. Phys. 25 (1992) 1122-1130.
- [66] Hecht E. Óptica. Addisan Wesley Longman (1998) 3^a rd. ed.
- [67] Yong, Y.; Shasha, L.; Zhou, Y.; Lian, L.; Chuanpeng, Y.; Yong, Z.; Yong. Z. Influence of indium concentration on the structural and optoelectronic properties of indium selenide thin films. Optical Materials 38 (2014) 217-222
- [68] Matheswaran, P.; Saravana Kumar, R.; Sathyamoorthy, R. Effect of Annealing on the Structural and Optical Properties of InSe Bilayer Thin Films. Vacuum 85 (2011) 820-826.